理科

2023年5月11日 (木)

太陽と雲と薄明光線

 河川沿いの土手を歩いていたら空に大きな雲が広がっていました。風に吹かれて左の方へ移動していきます。雲の左側には太陽が輝いていたのですが雲に遮らられていきます。太陽が雲に隠れると雲の切れ間から光芒が漏れ出しました。これは薄明光線と言って雲の端や切れ間から光が漏れて光線が放射状に見える現象です。光線が下に降り注ぐ薄明光線は天使の柱とも呼ばれます。今回は光線が漏れ出している位置の下側に厚い雲が広がっているので天使の柱とまでは言えないような薄明光線でした。

1_20230511140201

 光線が漏れ出しているところを拡大撮影してみました。上の写真より雲がやや左側に移動し太陽がさらに雲に隠れています。太陽光と雲の厚さで複雑な色合いになっています。上から1/3ぐらいのところと1/2ぐらいのところになんだか動物の顔のように見えますね。1/3のところは口を大きく開いています。1/2のところは青い目が不気味です。

2_20230511140201

【関連記事】

雲の中の天体ショー 金環日食 

雲の色は何色?

環水平アーク

空に広がる波状雲(はじょううん)

かなとこ雲が発生(2020年8月30日)|かなとこ雲はどんな雲

ブログランキング・にほんブログ村へにほんブログ村

人気ブログランキングへ

 

| | | コメント (0)

2021年1月20日 (水)

太陽と月が同じ大きさに見える理由

 太陽の平均直径は1,392,000 km、月の平均直径は3,474.8 kmです。直径で比較すると太陽は月の400倍です。太陽の直径は月が400個も並ぶ大きさです。ところが、地球から太陽と月を見たときには、ほとんど同じ大きさに見えます。次の写真は太陽と月を同じ倍率で撮影して、見かけの大きさを比較したものです。

太陽と月の見かけの大きさの比較
太陽と月の見かけの大きさの比較

 地球から見たときに太陽と月が同じ大きさに見えるのは「地球から太陽の距離」と「地球から月までの距離」に関係しています。景色を眺めているとき、遠いところにあるものが小さく見えることは、日常でも体験していることと思います。

遠くにある柱は小さく見える
同じ大きさの柱でも遠くにあるものは小さく見える

 次の図は近くの物体Aと遠くの物体Bを見たときの様子を示したもです。これら2つの物体は同じ大きさですが、それぞれの物体までの距離が異なるため、物体を出た光が眼に入ってくる角度が異なります。そのため、網膜にできる像が、それぞれA'とB'となり、結果として、遠いところにある物体Bは近いところにある物体Aよりも小さく見えるのです。また、物体Cは物体Aよりも大きいのですが、物体Aと同じ大きさに見えます。

物体の大きさの捉え方
物体の大きさの捉え方

 このように、私たちは物体の大きさを光がやってくる角度として捉えます。従って、この角度で物体の見かけの大きさを表すことができます。この角度は次の図のようにえると求めることができます。

物体の見かけの大きさの求め方
物体の見かけの大きさの求め方

 物体の大きさy、物体までの距離L、物体が見える角度θの間には次の関係があります。

tanθ = y/L または y = L・tanθ

 さて、冒頭で述べたように太陽の平均直径は1,392,000 km、月の平均直径は3,474.8 kmですが、地球と太陽の平均距離は149,597,870 km、 地球と月の平均距離は384,400km です。これを上式に当てはめると、

太陽の場合は、

tanθ = 1,392,200/149,597,870
θ = 0.53

月の場合は、

tanθ = 3,474.8/384,400
θ = 0.52

となり、どちらの角度も約0.5度になります。結果として、太陽と月の見かけの大きさ(視直径)はほとんど同じ大きさになります。

 地球と太陽は上図の物体Aと物体Cと同じような位置関係にあり、太陽と月の視直径は約0.5度で、地球からの見かけの大きさは同じと覚えておくと良いでしょう。

人気ブログランキングへ

| | | コメント (0)

2020年10月 5日 (月)

安価なスタンド付き三角プリズム

三角プリズム 物理学 光の実験 教育 光学ガラス製 光スペクトル 物理教育

 三角プリズムは以前は高価だったのですが、最近では安価な中国製のものが入手できるようになりました。しかしながら、スタンド付き(台座付き)の三角プリズムは安価なものはありませんでした。この三角プリズムは価格は2,400円ぐらいで、写真のようにプラスチック製のスタンドが付いています。プラスチック製ですので、多少のゆがみはありますが、簡単なプリズム分散の実験には十分に使えます。スタンドがなくて実験に苦労していた人は楽になると思います。

 プリズム本体は光学ガラス製とあります。どんな光学ガラスなのかは説明はありませんが、本ブログの記事「光学ガラス製のガラス玉」で紹介したBK7相当のK9と呼ばれれているものかもしれません。

台座付き三角プリズム
台座付き三角プリズム

 次のような箱に入って届きました。中国語で三角プリズムは「三稜鏡」と言います。ちなみにレンズは「透鏡」です。

三稜鏡の箱
三稜鏡の箱

【仕様】

材質:プラスチックスタンド、光学ガラスプリズム
スタンドカラー:ブラック
サイズ(L * W):17 * 12cm
重量:約 109g

パッケージに含まれるもの:
1×光学三角プリズム
1×ブラックスタンド

人気ブログランキングへ

| | | コメント (0)

2020年9月29日 (火)

凹レンズの公式の導出-虚像

 凹レンズでできる虚像のレンズの写像公式も実像のときと同様に求めることができます。

凹レンズでできる虚像
凹レンズでできる虚像

 この図からレンズの公式を導くことができます。

 次の図で△OABと△OA’B’が相似形であることに注目します。

凹レンズの虚像の相似形
凹レンズの虚像の相似形

△OABと△OA’B’が相似形ですから、

A’B’/AB=B’O/BO=b/a ……(1)式

の関係にあります。

次に、下図で△FPOと△FA’B’が相似形であることに注目します。

凹レンズの虚像の相似形
凹レンズの虚像の相似形

△FPOと△FA’B’が相似形ですから、

A’B’/PO=B’F/OF=(f-b)/f ……(2)式

の関係にあります。

ここで、AB=POであることに着目すると(1)式と(2)式が等しいことがわかります。

つまり、

b/a=(fーb)/f

の関係にあります。

この式を変形すると、

bf=afーab

となります。

両辺をfで割ると

b=aーab/f

より

-ab/f=b-a

両辺をabで割ると

-1/f=1/a-1/b ……(3)式

となります。

凹レンズの場合はf<0とし、また虚像はb<0とする約束がありますので、

1/f=1/a+1/b

のように表すことができます。

レンズの倍率mは虚像の高さと物体の高さの比ですからA’B‘/ABです。これは(1)式と同じですから、次の式が得られます。

m=A’B’/AB=b/a

ここで(3)式を考えてみましょう。1/a  と 1/b の差分が -1/f ですから、1/a - 1/b は負の値となることがわかります。

ということは

1/b > 1 /a

ということです。つまり、

b/a < 1

凹レンズの虚像の倍率は常に1より小さくなります。

これは凹レンズでは物体を拡大して見ることができないことを意味しています。

人気ブログランキングへ

| | | コメント (0)

2020年9月18日 (金)

光の反射の実験で半円レンズが使われる理由

 光の反射の実験のときに半円レンズを使う場合があります。次の図のように、光線を半円レンズの曲面からレンズの中心に向けて入射し、入射角と反射角が等しいことを確認します。

1_20200918101401
半円レンズによる反射の実験

 なぜ反射の実験に半円レンズが使われることが多いのでしょうか。それは半円レンズの中心に向かう光線および半円レンズの中心で反射する光線が半円レンズの曲面で屈折しないからです。光線が曲面の接線に対して垂直になっているため、そのまま直進するのです。

 そのため任意の入射角で光を入れたときに、必ず入射角=反射角になることを容易に確認できます。四角いガラス板の場合は、光が入射する点と射出する点で屈折するため、上図のようにはなりません。

 光線を半円レンズの中心からずれた位置に向けて入射すると、光線は曲面で屈折します。ナリカチャンネルに半円レンズの反射の実験の様子の映像がありました。

D20-1626 光の屈折・反射実験セット RRL-3Y

反射の実験で半円レンズを使うと、屈折の実験にスムーズに移行できます。

人気ブログランキングへ

| | | コメント (0)

2020年7月21日 (火)

「レンズ」のキホン (イチバンやさしい理工系)

 「レンズ」のキホン (イチバンやさしい理工系)

 光学とレンズの初心者向けの図解入門書です。フルカラーですので、光路図などがとてもわかりやすくなっています。光学とレンズのキホンのキから解説しているので、これからレンズのことを勉強したい人だけでなく、レンズの基本を教える人にとっても役に立つと思います。

Hyosi

桑嶋幹(著)

レンズを知ると光学はこんなにおもしろい!
昨今のデジタル一眼レフカメラのブームもあって、レンズのことをもっと知りたい人が増えています。本書は、高校生から一般の人を対象に、レンズのことを知る超入門書として、図解や写真をふんだんに使いながら、わかりやすく光の世界を解説します。

レンズを知ることは、光の性質を知ることにつながります。また、メガネや望遠鏡などの光学機器ばかりか、ヒトの眼の構造の理解も進みます。身近な例を題材に、徹底してやさしく、おもしろい話題を集めました。

単行本: 224ページ
出版社: ソフトバンククリエイティブ (2010/6/18)
ISBN-10: 4797357150
ISBN-13: 978-4797357158
発売日: 2010/6/18

読者サポートサイト

http://lens-softbank.goryoukaku.com/

目次

はじめに
登場キャラクターのご紹介

第 1 章 レンズのお話

001 レンズは光の屈折をたくみに利用するために生みだした道具
002 レンズの歴史
003 小さなものを拡大して見る顕微鏡の歴史
004 遠くのものを近くに見る望遠鏡の歴史
005 レンズでできた像を記録するカメラの歴史

COLUMN レンズの語源

第 2 章 光のふるまい

006 光の直進性と逆進性
007 光の反射の法則
008 鏡による光の反射
009 光の乱反射
010 透明な物体を通る光
011 光は物質の境界面で折れ曲がる 光の屈折
012 光はどのような道筋を選んで進むのか フェルマーの原理
013 スネルの法則①
014 スネルの法則②
015 空気のゆらぎが光を曲げる 陽炎と逃げ水のしくみ
016 空気のゆらぎが光を曲げる 蜃気楼と大気差のしくみ
017 プリズムでできる光の色の帯 光の分散
018 大空にかかる光の色の帯 虹ができるしくみ
019 虹の形はどうして円弧なのか
020 光は波か粒子か① 光の回折
021 光は波か粒子か② 光の干渉
022 光の回折と干渉でできる虹のしくみ
023 光は縦波か横波か
024 偏光メガネとブリュースターの法則
025 光は電磁波の仲間
026 光の速さはどれぐらいか
027 光のふるまいを考える幾何光学と波動光学

COLUMN 近接場光ー光の回折限界を超える光 66

第 3 章 レンズのしくみと働き

028 点光源からでた光はどのように進むか
029 影のでき方
030 ピンホールでできる像
031 ピンホールカメラでできる像
032 レンズの基本的なしくみ
033 凸レンズと凹レンズの基本的な働き
034 レンズの焦点と焦点距離
035 レンズの主点と主平面
036 薄肉球面レンズの焦点距離の求め方
037 レンズを通る光の進み方
038 凸レンズでできる実像
039 無限遠からやってくる光は凸レンズでどこに像を結ぶか
040 凸レンズでできる虚像
041 凸レンズを半分隠すと実像と虚像はどうなるか
042 物体が焦点の位置にあるとき実像と虚像はどうなるか
043 凹レンズでできる虚像
044 レンズの写像公式と倍率① 凸レンズの実像の場合
045 レンズの写像公式と倍率② 凸レンズの虚像の場合
046 レンズの写像公式と倍率③ 凹レンズの虚像の場合
047 レンズの写像公式のまとめ
048 レンズの倍率を求めるもう1つの方法
049 レンズの作図の裏技① 光軸上の1点からでて凸レンズに入射する光
050 レンズの作図の裏技② 凸レンズに任意の傾きで入射する光
051 レンズの作図の裏技③ 凹レンズを通る光の場合
052 2枚のレンズを通る光
053 凹面鏡と凸面鏡のしくみ
054 凹面鏡と凸面鏡で反射する光
055 レンズの分類の仕方
056 表面屈折を利用したレンズ① 球面レンズ
057 表面屈折を利用したレンズ② 非球面レンズ
058 表面屈折を利用したレンズ③ シリンドリカルレンズ
059 表面屈折を利用したレンズ④ トロイダルレンズ
060 表面屈折を利用したレンズ⑤ フレネルレンズ
061 表面屈折を利用しないレンズ① グリンレンズ(屈折率分布レンズ)
062 表面屈折を利用しないレンズ② 回折レンズ

COLUMN メタマテリアルー負の屈折率をもつ物質

第 4 章 レンズの性能

063 レンズをつくる光学ガラスに求められる性質
064 光学ガラスの屈折率
065 光学ガラスのアッベ数
066 光学ガラスの分類
067 ガラス以外の光学材料① 天然や人工の結晶
068 ガラス以外の光学材料② 光学プラスチック
069 レンズができるまで① 球面レンズのつくり方
070 レンズができるまで② 非球面レンズのつくり方
071 収差とはなにか
072 球面収差
073 球面収差の補正
074 コマ収差と非点収差
075 像面湾曲と歪曲収差
076 軸上色収差と倍率色収差
077 像の大きさと明るさ
078 Fナンバーと実効Fナンバー
079 開口数NAとレンズの分解能
080 絞りと瞳
081 絞りの位置とテレセントリック
082 焦点深度と被写界深度

COLUMN ガラスはなぜ透明なのか

第 5 章 レンズを使った身近なもののしくみ

083 ヒトの眼の構造
084 正常な眼のしくみと働き
085 近視と遠視
086 老視と乱視
087 コンタクトレンズのしくみ
088 ルーペのしくみ
089 ルーペの倍率
090 光学顕微鏡のしくみ① 基本的なしくみ
091 光学顕微鏡のしくみ② 倍率と分解能
092 望遠鏡のしくみ① 基本的なしくみ
093 望遠鏡のしくみ② ケプラー式望遠鏡の光の進み方
094 望遠鏡のしくみ③ オランダ式(ガリレオ)望遠鏡の光の進み方
095 望遠鏡のしくみ④ 望遠鏡の倍率
096 望遠鏡のしくみ⑤ ピント合わせが必要なのはなぜ?
097 カメラのしくみ① Fナンバーとシャッタースピード
098 カメラのしくみ② 画角と焦点距離
099 カメラのしくみ③ デジタルカメラの画角と焦点距離
100 進化するレンズ 流体レンズのしくみ

COLUMN 像反転系 倒立像を正立像として見る

参考文献
索引

サンプルページ

第1章 第1節 レンズは光の屈折をたくみに利用するために生みだした道具

1001

第2章 第6節 光の直進性と逆進性

2006  

人気ブログランキングへ

| | | コメント (0) | トラックバック (0)

2020年6月29日 (月)

白いアジサイ「アナベル」はなぜ白いのか?

近所の家の軒先でアジサイがとても綺麗に咲いていました。

アジサイ 紫陽花

 アジサイの花の色を左右する重要な物質は土壌中に含まれるアルミニウムです。アジサイの花の色素のデルフィニジンはアルミニウムと結びつくと青色に呈色し、アルミニウムが少ないと赤色に呈色する性質があります。

 アルミニウムは土壌中にたくさん含まれていますが、土壌が酸性だと溶け出しやすく、植物に吸収されやすくなります。一方、土壌がアルカリ性だと溶け出しにくくなります。

 同じ株に咲いているのに色の違う花をつけるのは、アジサイの根が四方八方に広がっているからです。雨が降ったり、水を与えているうちに、土壌の成分が流れ出したりして、酸性度やアルミニウムの量が変化すると、根が吸収するアルミニウムの量が変わるため、色が変わってくるのです。このあたりについては、本ブログ「光と色と:花の色はいろいろ」で解説しています。

 さて、写真の中に白いアジサイが咲いています。この白いアジサイはアナベルという品種です。アナベルはアルミニウムと結びつく色素をもっていないため、土壌の酸性度によって色が変わりません。アナベルは咲き始めの成長時期はクロロフィルにより、薄い緑色をしていますが、成長すると真っ白な花になります。

アナベル アジサイ

【関連記事】

ホンアジサイの原種はガクアジサイ(額紫陽花)

道端のアジサイ|アジサイの色はどのように決まるのか

四色のアジサイ

白いアジサイ「アナベル」はなぜ白いのか?

花の色はいろいろ|花の色の仕組み

ブログランキング・にほんブログ村へにほんブログ村

人気ブログランキングへ

 

| | | コメント (0)

2020年6月16日 (火)

レンチキュラーレンズで光学迷彩?(3) ものが消えて見える原理と仕組み

 レンチキュラーレンズで鉛筆が消えて見える

 次の写真の右上のように、縦向きに置いた鉛筆のうえに横向きに鉛筆を置きます。これを=の方向にしたレンチキュラーレンズの通して見ると、写真の左のように上に置いたはずの横向きの鉛筆が消えて、下に置いたはずの縦向きの鉛筆が見えます。このままの状態で、写真右下のようにレンチキュラーレンズを90度回転し、‖の方向にすると、縦向きの鉛筆が消えて、横向きの鉛筆が見えます。また、よく見てみると、写真左では、横向きの鉛筆が消えて見えなくなっている部分(縦置きの鉛筆の左右)、写真右下では、縦向きの鉛筆が消えて見えなくなっている部分(横向きの鉛筆の上下)が背景色とい同じオレンジ色になっています。

レンチキュラーレンズで鉛筆が消える
レンチキュラーレンズで鉛筆が消える

レンチキュラーレンズでものが消えて見える理由は、少年写真新聞社理科教育ニュースの2020年5月28日号に解説が掲載されていますが、ここでは、この現象についてもう少し詳しく解説します。さらに理解を深めることができればと思います。

シリンドリカルレンズの虚像

 レンチキュラーレンズによる鉛筆の見え方の変化の現象の基本的原理はシリンドリカルレンズでできる実像です。なぜなら、この現象は、レンチキュラーレンズを鉛筆に密着した状態で見ているときには起きないからです。ですから、上の写真のように、鉛筆が方向によって、見えたり消えたりするのは、レンチキュラーレンズでできる鉛筆の実像を見ていることになります。

 理解を深めるために、まずはひとつのシリンドリカルレンズで見える虚像を考えてみます。シリンドリカルレンズでできる虚像は、曲面がある方向に拡大されます。下の写真はグラフ用紙の真上にシリンドリカルレンズを=の方向に置いたものです。シリンドルカルレンズを=の方向に置いたとき、縦方向には曲面がありますが、横方向には曲面がありません。

レンチキュラーレンズの虚像
レンチキュラーレンズの虚像

 上の写真でレンズの中のグラフを見てみると、縦方向の線の太さや、縦線の間隔には変化がないことがわかります。これは曲面のない横方向で光が屈折しないからです。一方、横方向の線は太くなっており、横線の間隔も広くなっています。レンズの外側では横線は 4 行あるのに、レンズの中では拡大された 2行しか見えていなません。これは、曲面のある縦方向で光が屈折するからです。

 この虚像の現象からは、上の鉛筆が消える写真の現象を説明することはできません。虚像の場合、シリンドリカルレンズを置く方向にかかわらず、縦方向の鉛筆も横方向の鉛筆も消えて見えなくなることはありません。また、上述の通り、鉛筆が消えている部分が背景のオレンジ色になっていますが、虚像ではこのようなことは起こりません。

シリンドリカルレンズの実像

 次にシリンドリカルレンズをグラフ用紙から離し、実像を観察してみます。光が屈折しない方向の縦線の太さや間隔は、虚像のときと同様に変化がありません。一方、横線については、虚像とは異なり、縦方向が圧縮され、たくさんの行が見えています。シリンドリカルレンズでできる実像は光を屈折する方向に直線上に集まるようにできますので、これは理に適っています。

シリンドリカルレンズの実像
シリンドリカルレンズの実像

 また、=の方向に置いたシリンドリカルレンズでできる実像は縦方向が反転していて、横方向はそのままであることに留意しておきましょう。ですから、レンズの中の上側の列は、実際には下の列が見えていて、レンズの中の下側の列は実際の上の列が見えています。下記のようにグラフの上に赤いラインを引くと縦方向が反転していることがわかります。 

 リンドリカルレンズの実像(縦方向反転) 
シリンドリカルレンズの実像(縦方向反転)

さらに、レンズをグラフから離していくと、さらに縦方向が圧縮されて、横線が見えなくなります。ところで、縦方向が詰まっているということは、変化がないように見える縦線も実は縦方向に詰まっているということです。

シリンドリカルレンズの実像
シリンドリカルレンズの実像(横線が見えなくなる)

 次の図はシリンドリカルレンズでできる実像の仕組みを示したものです。シリンドリカルレンズを=の方向に配置すると、横長の物体ABの実像A'B'は、横方向はそのままですが、縦方向が縮んで細い線状となるため、視認しずらくなります。一方、縦長の物体CDの実像C'D'も縦方向に縮みますが、物体が十分に縦長なため、視認できます。レンズを90度回転すると、今度はC'D'が視認できなくなります。

シリンドリカルレンズの実像(模式図)

シリンドリカルレンズの実像(模式図)

 レンチキュラーレンズの各々のレンズの実像は反転していますが、微小な領域のため全体として見たときには反転して見えません。また、横置きの鉛筆の下側にある縦置き鉛筆が前面にあるように見えるのは、レンチキュラーレンズに物体を引き延ばして見せる効果があるからです。レンチキュラーレンズで鉛筆の端の方を観察すると、鉛筆が伸びて見えることがわかります。

 このことを確認するためパソコンで画像を作成して次のような確認をしてみました。

パソコンで次のような絵を描き(左)、これをレンチキュラーレンズを通してみてみました。画面にレンチキュラーレンズをぴったりとつけて、虚像を観察すると、レンチキュラーレンズの方向にかかわらず、元の絵からほとんど変化していません。

レンチキュラーレンズの虚像 元の絵(左) =方向(中) ‖方向(右)
レンチキュラーレンズの虚像 元の絵(左) =方向(中) ‖方向(右)

 レンチキュラーレンズを画面から離して、実像を観察すると、レンチュキュラーの置き方が=方向(写真左)か‖方向か(写真中)によって、元の絵とは見え方が変わります。最初の鉛筆の実験の写真と同じ結果となっています。

レンチキュラーレンズの実像 =方向(左) ‖方向(中) =方向で伸びる(右)
レンチキュラーレンズの実像 =方向(左) ‖方向(中) =方向で伸びる(右)

 写真左において、縦長の棒しか見えないのは、横長の棒がシリンドリカルレンズの屈折の働きで圧縮されてしまいぼやけて視認できなくなるからです。実際には縦長の棒も圧縮されていますが、圧縮される方向に縦長のため、横長の棒のようぼけたようには見えません。また、横長の棒の下側にあるはずの縦長の棒が前面に出ているように見えるのは、レンチキュラーレンズが物体を引き延ばして見せるからです。写真右を見ると、縦長の棒と黒い背景が下側に伸びて見えることがわかります。最初の鉛筆の写真で背面のオレンジ色が前面に出てきているのも同じ理由です。

 以上がレンチキュラーレンズの向きで、縦横の向きの鉛筆が消えて見える理由です。

さて、レンチキュラーレンズを通してものを見ると、確かにものが消えます。これはレンチキュラーレンズでできる実像が圧縮したり伸びたりしてぼやけているからです。確かに特殊なレンズを用いた面白い現象ですが、これだけですと光学迷彩というまでには少し無理がありそうです。

人気ブログランキングへ

【関連記事】

 

 

| | | コメント (0)

2020年6月 6日 (土)

光学ガラス製のガラス玉

水晶玉 60mm 無色透明 クリア台座付き 宙玉撮影 クリスタルボール レンズボール 撮影 水晶球

ガラス玉があると、魚眼レンズの観察や虹ができる仕組み(水滴中の光の進み方)など、いろいろな実験ができます。以前は、大きなものを手軽な価格で入手するのは困難でしたが、最近になって中国製の安価なものを入手できるようになりました。直径60 mmで1,280円、80 mmで1,680円です。この値段だと複数個変える値段です。

Photo_20200605185001

 水晶玉とありますが、もちろん天然水晶であるはずはありません。Amazonのサイトには【K9クリスタル素材を採用、透明度が高いボール】とあります。K9というからには光学ガラスのクラウンガラスだと思いますが、K9というのは聞いたことがありません。調べてみたら、BK7と同じもののようです。BK7はホウケイ酸塩クラウン光学ガラスで、合成石英でもありません。ですので、水晶という表現は適切ではないのですが、実験道具としてはBK7で十分です。

人気ブログランキングへ

【関連記事】

 

 

| | | コメント (0)

2020年5月16日 (土)

雷の正体見たり静電気 雷の仕組み

雷の正体を探る

 大音響とともに鋭い光の筋が空を切り裂く雷。古代の人々は雷は雲の中にいる神様が光と音を出していると考えていました。たとえば、ギリシャ神話の全知全能の神であるゼウスは雷を司る天空神です。日本では、古くから雷神が雷をおこすと考えられていました。日本語の雷の語源は神鳴りと考えられています.

雷神(俵屋宗達)
雷神(俵屋宗達)

 雷の正体は18世紀の半ばには電気であることが予想されていました。雷の正体を初めて実験で確かめたのは、アメリカの政治家・科学者のベンジャミン・フランクリンです。フランクリンは静電気の実験に使われていたライデン瓶に蓄電すると、電気火花が発生するのを見て、この電気火花と稲妻は同じものではないかと考えたのです。

ベンジャミン・フランクリン
ベンジャミン・フランクリン

 ライデン瓶は1746年にオランダのライデン大学の物理学者ピーテル・ファン・ミュッセンブルークが発明した蓄電装置です。実際には数ヶ月ほど前にドイツのエヴァルト・ゲオルク・フォン・クライストも同じ仕組みのものを発明しています。ライデン瓶の上部の金属球に静電気を帯びたものを触れると、金属箔に電気が蓄えられます。電気が蓄えられた状態で、内側と外側の金属箔を短絡(ショート)するとライデン瓶の中で放電が起こり、電気火花が発生します。

ライデン瓶の仕組み
ライデン瓶の仕組み

フランクリンの凧あげ実験

 1752年6月、フランクリンは雷の正体を調べるため、自分の息子とともに雷雲をめがけて凧あげの実験を行いました。 彼は凧に針金を取り付け、凧糸には水に濡れやすい麻糸を使いました。そして、麻糸に金属の鍵を取り付けました。金属の鍵から手元までは感電防止のため濡れにくい絹糸を使いました。雷で麻糸が帯電して逆立ったとき、彼は息子に金属の鍵の先にライデン瓶を近づけるように言いました。息子がライデン瓶を鍵に近づけると、雷の電気がライデン瓶に蓄電されていきました。そして、ライデン瓶を短絡させると、ライデン瓶の中で電気火花が生じました。一瞬の出来事でしたが、雷の正体が電気であることが確かめられた瞬間でした。

フランクリンの凧あげ実験
フランクリンの凧あげ実験


※フランクリンの凧あげ実験は非常に危険ななので、絶対にやってはいけません。

雷雲が発生するしくみ

 空に浮かぶ雲は細かい水滴や氷の粒でできています。これらの水滴や氷の粒は地上や海上で蒸発した水です。空気は気温が高いほど水蒸気をたくさん含むことができます。暖かい空気は軽いので上空へ昇っていきますが、上空は気圧が低いので膨張します。このとき、空気は外部から熱を与えられない状態で膨張します。空気自身が持つ熱が膨張に使われるので、空気の温度が下がります。空気に含まれる水蒸気は冷やされると気体のままでは存在できなくなり、凝結して細かい水滴や氷の粒になります。これが雲の正体です。
 雷がよく起きるのは、夏に空高くまで発達した積乱雲の中です。積乱雲の中では、強い上昇気流のために、氷同士が激しく衝突します。このとき、氷の表面の水や衝突で融けた水が負の電荷を持ち、それが成長する氷に移動します。そのため、大きい氷の粒がマイナス、小さい粒がプラスの電気を帯びます。小さい粒は、軽いために雲の上の方へ、大きい粒は重いため雲の下の方へ移動します。その結果、雷雲は、ちょうどプラスとマイナスが向かい合った形となり、そこに高い電圧がかかるというわけです。また雷雲が大地に近づくと、その下の地面はプラスに帯電していきます。これを静電誘導といいます。

雷雲の帯電の仕組み
雷雲の帯電の仕組み

 雷雲が発生すると、雲の中で静電気がたまります。この静電気が、雲と地上の間の大気の絶縁性で支えきれないほど大きくなると、雲から地上へ対地放電が起こります。これが落雷です。また、放電は落雷よりも雲の中で頻繁に起こります。このとき、雲が青白く光って見えます。ひとつの雷雲の中で起こる場合を雲内放電、複数の雷雲の間で起こる場合を雲間放電といいます。

稲妻が光るしくみ

 内部を真空にしたライデン瓶で放電の実験を行うと、電気火花が生じなくなります。つまり、電気火花の発生には空気が関係しています。本来、空気は絶縁体で電流は流れません。しかし、強い電圧をかけると、瞬間的に電気絶縁性が失われ大電流が流れます。すると、大きなエネルギーを持った電子が、空気中の窒素や酸素に衝突します。窒素や酸素は電子のエネルギーを受け取り、自分自身も電子を放出してイオン化して高エネルギー状態になります。高エネルギー状態になった窒素や酸素は、すぐに元のエネルギー状態に戻ります。このとき、余分なエネルギーが光となって出てくるわけです。これを放電現象といいますが、稲妻の光もこれと同じ現象です。なお、放電が起こると、火花の周囲の温度が急激に上昇し、空気が瞬間的に膨張します。そして、膨張した空気はすぐに冷えるため収縮します。この空気の膨張と収縮が振動となって音となります。

 雷の放電は、大気の絶縁性のために、いっきに地面には届きません。何度も小きざみに放電を繰り返し、電気の通り道を作りながら、地面へと近づきます。稲妻がジグザグに見えるのはこのためです。これを先駆放電といいます。稲妻が地面に届くと、今度は逆に地面から雲に向かって放電が起こります。これを帰還雷撃といい、このとき強い光と大きな音を出します。これが落雷です。

 落雷をハイスピードカメラで撮影して映像がYouTubeにあがっています。

 Slow Motion Lightning

落雷の威力は凄いです。

Close-Up Lightning strike Compilation with Horrifying Sound and Destruction |Thunder strikes

 

人気ブログランキングへ

| | | コメント (0)