レンズ

2020年7月21日 (火)

「レンズ」のキホン (イチバンやさしい理工系)

 「レンズ」のキホン (イチバンやさしい理工系)

 光学とレンズの初心者向けの図解入門書です。フルカラーですので、光路図などがとてもわかりやすくなっています。光学とレンズのキホンのキから解説しているので、これからレンズのことを勉強したい人だけでなく、レンズの基本を教える人にとっても役に立つと思います。

Hyosi

桑嶋幹(著)

レンズを知ると光学はこんなにおもしろい!
昨今のデジタル一眼レフカメラのブームもあって、レンズのことをもっと知りたい人が増えています。本書は、高校生から一般の人を対象に、レンズのことを知る超入門書として、図解や写真をふんだんに使いながら、わかりやすく光の世界を解説します。

レンズを知ることは、光の性質を知ることにつながります。また、メガネや望遠鏡などの光学機器ばかりか、ヒトの眼の構造の理解も進みます。身近な例を題材に、徹底してやさしく、おもしろい話題を集めました。

単行本: 224ページ
出版社: ソフトバンククリエイティブ (2010/6/18)
ISBN-10: 4797357150
ISBN-13: 978-4797357158
発売日: 2010/6/18

読者サポートサイト

http://lens-softbank.goryoukaku.com/

目次

はじめに
登場キャラクターのご紹介

第 1 章 レンズのお話

001 レンズは光の屈折をたくみに利用するために生みだした道具
002 レンズの歴史
003 小さなものを拡大して見る顕微鏡の歴史
004 遠くのものを近くに見る望遠鏡の歴史
005 レンズでできた像を記録するカメラの歴史

COLUMN レンズの語源

第 2 章 光のふるまい

006 光の直進性と逆進性
007 光の反射の法則
008 鏡による光の反射
009 光の乱反射
010 透明な物体を通る光
011 光は物質の境界面で折れ曲がる 光の屈折
012 光はどのような道筋を選んで進むのか フェルマーの原理
013 スネルの法則①
014 スネルの法則②
015 空気のゆらぎが光を曲げる 陽炎と逃げ水のしくみ
016 空気のゆらぎが光を曲げる 蜃気楼と大気差のしくみ
017 プリズムでできる光の色の帯 光の分散
018 大空にかかる光の色の帯 虹ができるしくみ
019 虹の形はどうして円弧なのか
020 光は波か粒子か① 光の回折
021 光は波か粒子か② 光の干渉
022 光の回折と干渉でできる虹のしくみ
023 光は縦波か横波か
024 偏光メガネとブリュースターの法則
025 光は電磁波の仲間
026 光の速さはどれぐらいか
027 光のふるまいを考える幾何光学と波動光学

COLUMN 近接場光ー光の回折限界を超える光 66

第 3 章 レンズのしくみと働き

028 点光源からでた光はどのように進むか
029 影のでき方
030 ピンホールでできる像
031 ピンホールカメラでできる像
032 レンズの基本的なしくみ
033 凸レンズと凹レンズの基本的な働き
034 レンズの焦点と焦点距離
035 レンズの主点と主平面
036 薄肉球面レンズの焦点距離の求め方
037 レンズを通る光の進み方
038 凸レンズでできる実像
039 無限遠からやってくる光は凸レンズでどこに像を結ぶか
040 凸レンズでできる虚像
041 凸レンズを半分隠すと実像と虚像はどうなるか
042 物体が焦点の位置にあるとき実像と虚像はどうなるか
043 凹レンズでできる虚像
044 レンズの写像公式と倍率① 凸レンズの実像の場合
045 レンズの写像公式と倍率② 凸レンズの虚像の場合
046 レンズの写像公式と倍率③ 凹レンズの虚像の場合
047 レンズの写像公式のまとめ
048 レンズの倍率を求めるもう1つの方法
049 レンズの作図の裏技① 光軸上の1点からでて凸レンズに入射する光
050 レンズの作図の裏技② 凸レンズに任意の傾きで入射する光
051 レンズの作図の裏技③ 凹レンズを通る光の場合
052 2枚のレンズを通る光
053 凹面鏡と凸面鏡のしくみ
054 凹面鏡と凸面鏡で反射する光
055 レンズの分類の仕方
056 表面屈折を利用したレンズ① 球面レンズ
057 表面屈折を利用したレンズ② 非球面レンズ
058 表面屈折を利用したレンズ③ シリンドリカルレンズ
059 表面屈折を利用したレンズ④ トロイダルレンズ
060 表面屈折を利用したレンズ⑤ フレネルレンズ
061 表面屈折を利用しないレンズ① グリンレンズ(屈折率分布レンズ)
062 表面屈折を利用しないレンズ② 回折レンズ

COLUMN メタマテリアルー負の屈折率をもつ物質

第 4 章 レンズの性能

063 レンズをつくる光学ガラスに求められる性質
064 光学ガラスの屈折率
065 光学ガラスのアッベ数
066 光学ガラスの分類
067 ガラス以外の光学材料① 天然や人工の結晶
068 ガラス以外の光学材料② 光学プラスチック
069 レンズができるまで① 球面レンズのつくり方
070 レンズができるまで② 非球面レンズのつくり方
071 収差とはなにか
072 球面収差
073 球面収差の補正
074 コマ収差と非点収差
075 像面湾曲と歪曲収差
076 軸上色収差と倍率色収差
077 像の大きさと明るさ
078 Fナンバーと実効Fナンバー
079 開口数NAとレンズの分解能
080 絞りと瞳
081 絞りの位置とテレセントリック
082 焦点深度と被写界深度

COLUMN ガラスはなぜ透明なのか

第 5 章 レンズを使った身近なもののしくみ

083 ヒトの眼の構造
084 正常な眼のしくみと働き
085 近視と遠視
086 老視と乱視
087 コンタクトレンズのしくみ
088 ルーペのしくみ
089 ルーペの倍率
090 光学顕微鏡のしくみ① 基本的なしくみ
091 光学顕微鏡のしくみ② 倍率と分解能
092 望遠鏡のしくみ① 基本的なしくみ
093 望遠鏡のしくみ② ケプラー式望遠鏡の光の進み方
094 望遠鏡のしくみ③ オランダ式(ガリレオ)望遠鏡の光の進み方
095 望遠鏡のしくみ④ 望遠鏡の倍率
096 望遠鏡のしくみ⑤ ピント合わせが必要なのはなぜ?
097 カメラのしくみ① Fナンバーとシャッタースピード
098 カメラのしくみ② 画角と焦点距離
099 カメラのしくみ③ デジタルカメラの画角と焦点距離
100 進化するレンズ 流体レンズのしくみ

COLUMN 像反転系 倒立像を正立像として見る

参考文献
索引

サンプルページ

第1章 第1節 レンズは光の屈折をたくみに利用するために生みだした道具

1001

第2章 第6節 光の直進性と逆進性

2006  

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2020年6月23日 (火)

Opus Majus of Roger Bacon ロジャー・ベーコンの大著作

ロジャー・ベーコンは13世紀に活躍したイギリスの哲学者でカトリックの司祭でした。ニュートンより400年も前の時代に、自然科学の理論の探求を行い、実験や観察を行いました。近代科学の先駆者と言えるでしょう。

Rogerbacon

今回紹介する書籍はロジャー・ベーコンの大著作(Opus Majus)の上下巻です(この本は英語版です)。

光学・レンズの歴史を勉強するうえで、ロジャー・ベーコンの功績は外せません。高価ではありますが、光学の歴史に興味のある人は手元にあっても良いかと思います。

Book Description

Volume one of a two volume set. (This description is for both volumes.) Contains much of Bacon's principle writings in mathematics, optics, experimental science, and philosophy. Bacon is regarded as the first modern scientist. This is one of his major works with 8 plates and 72 illustrations.

The Opus Majus of Roger Bacon (Cambridge Library Collection - Physical Sciences)

The Opus Majus of Roger Bacon, Volume 2, Part 1 & 2 (Cambridge Library Collection - Physical Sciences)

 

   人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2020年6月16日 (火)

レンチキュラーレンズで光学迷彩?(3) ものが消えて見える原理と仕組み

 レンチキュラーレンズで鉛筆が消えて見える

 次の写真の右上のように、縦向きに置いた鉛筆のうえに横向きに鉛筆を置きます。これを=の方向にしたレンチキュラーレンズの通して見ると、写真の左のように上に置いたはずの横向きの鉛筆が消えて、下に置いたはずの縦向きの鉛筆が見えます。このままの状態で、写真右下のようにレンチキュラーレンズを90度回転し、‖の方向にすると、縦向きの鉛筆が消えて、横向きの鉛筆が見えます。また、よく見てみると、写真左では、横向きの鉛筆が消えて見えなくなっている部分(縦置きの鉛筆の左右)、写真右下では、縦向きの鉛筆が消えて見えなくなっている部分(横向きの鉛筆の上下)が背景色とい同じオレンジ色になっています。

レンチキュラーレンズで鉛筆が消える
レンチキュラーレンズで鉛筆が消える

レンチキュラーレンズでものが消えて見える理由は、少年写真新聞社理科教育ニュースの2020年5月28日号に解説が掲載されていますが、ここでは、この現象についてもう少し詳しく解説します。さらに理解を深めることができればと思います。

シリンドリカルレンズの虚像

 レンチキュラーレンズによる鉛筆の見え方の変化の現象の基本的原理はシリンドリカルレンズでできる実像です。なぜなら、この現象は、レンチキュラーレンズを鉛筆に密着した状態で見ているときには起きないからです。ですから、上の写真のように、鉛筆が方向によって、見えたり消えたりするのは、レンチキュラーレンズでできる鉛筆の実像を見ていることになります。

 理解を深めるために、まずはひとつのシリンドリカルレンズで見える虚像を考えてみます。シリンドリカルレンズでできる虚像は、曲面がある方向に拡大されます。下の写真はグラフ用紙の真上にシリンドリカルレンズを=の方向に置いたものです。シリンドルカルレンズを=の方向に置いたとき、縦方向には曲面がありますが、横方向には曲面がありません。

レンチキュラーレンズの虚像
レンチキュラーレンズの虚像

 上の写真でレンズの中のグラフを見てみると、縦方向の線の太さや、縦線の間隔には変化がないことがわかります。これは曲面のない横方向で光が屈折しないからです。一方、横方向の線は太くなっており、横線の間隔も広くなっています。レンズの外側では横線は 4 行あるのに、レンズの中では拡大された 2行しか見えていなません。これは、曲面のある縦方向で光が屈折するからです。

 この虚像の現象からは、上の鉛筆が消える写真の現象を説明することはできません。虚像の場合、シリンドリカルレンズを置く方向にかかわらず、縦方向の鉛筆も横方向の鉛筆も消えて見えなくなることはありません。また、上述の通り、鉛筆が消えている部分が背景のオレンジ色になっていますが、虚像ではこのようなことは起こりません。

シリンドリカルレンズの実像

 次にシリンドリカルレンズをグラフ用紙から離し、実像を観察してみます。光が屈折しない方向の縦線の太さや間隔は、虚像のときと同様に変化がありません。一方、横線については、虚像とは異なり、縦方向が圧縮され、たくさんの行が見えています。シリンドリカルレンズでできる実像は光を屈折する方向に直線上に集まるようにできますので、これは理に適っています。

シリンドリカルレンズの実像
シリンドリカルレンズの実像

 また、=の方向に置いたシリンドリカルレンズでできる実像は縦方向が反転していて、横方向はそのままであることに留意しておきましょう。ですから、レンズの中の上側の列は、実際には下の列が見えていて、レンズの中の下側の列は実際の上の列が見えています。下記のようにグラフの上に赤いラインを引くと縦方向が反転していることがわかります。 

 リンドリカルレンズの実像(縦方向反転) 
シリンドリカルレンズの実像(縦方向反転)

さらに、レンズをグラフから離していくと、さらに縦方向が圧縮されて、横線が見えなくなります。ところで、縦方向が詰まっているということは、変化がないように見える縦線も実は縦方向に詰まっているということです。

シリンドリカルレンズの実像
シリンドリカルレンズの実像(横線が見えなくなる)

 次の図はシリンドリカルレンズでできる実像の仕組みを示したものです。シリンドリカルレンズを=の方向に配置すると、横長の物体ABの実像A'B'は、横方向はそのままですが、縦方向が縮んで細い線状となるため、視認しずらくなります。一方、縦長の物体CDの実像C'D'も縦方向に縮みますが、物体が十分に縦長なため、視認できます。レンズを90度回転すると、今度はC'D'が視認できなくなります。

シリンドリカルレンズの実像(模式図)

シリンドリカルレンズの実像(模式図)

 レンチキュラーレンズの各々のレンズの実像は反転していますが、微小な領域のため全体として見たときには反転して見えません。また、横置きの鉛筆の下側にある縦置き鉛筆が前面にあるように見えるのは、レンチキュラーレンズに物体を引き延ばして見せる効果があるからです。レンチキュラーレンズで鉛筆の端の方を観察すると、鉛筆が伸びて見えることがわかります。

 このことを確認するためパソコンで画像を作成して次のような確認をしてみました。

パソコンで次のような絵を描き(左)、これをレンチキュラーレンズを通してみてみました。画面にレンチキュラーレンズをぴったりとつけて、虚像を観察すると、レンチキュラーレンズの方向にかかわらず、元の絵からほとんど変化していません。

レンチキュラーレンズの虚像 元の絵(左) =方向(中) ‖方向(右)
レンチキュラーレンズの虚像 元の絵(左) =方向(中) ‖方向(右)

 レンチキュラーレンズを画面から離して、実像を観察すると、レンチュキュラーの置き方が=方向(写真左)か‖方向か(写真中)によって、元の絵とは見え方が変わります。最初の鉛筆の実験の写真と同じ結果となっています。

レンチキュラーレンズの実像 =方向(左) ‖方向(中) =方向で伸びる(右)
レンチキュラーレンズの実像 =方向(左) ‖方向(中) =方向で伸びる(右)

 写真左において、縦長の棒しか見えないのは、横長の棒がシリンドリカルレンズの屈折の働きで圧縮されてしまいぼやけて視認できなくなるからです。実際には縦長の棒も圧縮されていますが、圧縮される方向に縦長のため、横長の棒のようぼけたようには見えません。また、横長の棒の下側にあるはずの縦長の棒が前面に出ているように見えるのは、レンチキュラーレンズが物体を引き延ばして見せるからです。写真右を見ると、縦長の棒と黒い背景が下側に伸びて見えることがわかります。最初の鉛筆の写真で背面のオレンジ色が前面に出てきているのも同じ理由です。

 以上がレンチキュラーレンズの向きで、縦横の向きの鉛筆が消えて見える理由です。

さて、レンチキュラーレンズを通してものを見ると、確かにものが消えます。これはレンチキュラーレンズでできる実像が圧縮したり伸びたりしてぼやけているからです。確かに特殊なレンズを用いた面白い現象ですが、これだけですと光学迷彩というまでには少し無理がありそうです。

人気ブログランキングへ

【関連記事】

 

 

| | コメント (0)

2020年6月 6日 (土)

光学ガラス製のガラス玉

水晶玉 60mm 無色透明 クリア台座付き 宙玉撮影 クリスタルボール レンズボール 撮影 水晶球

ガラス玉があると、魚眼レンズの観察や虹ができる仕組み(水滴中の光の進み方)など、いろいろな実験ができます。以前は、大きなものを手軽な価格で入手するのは困難でしたが、最近になって中国製の安価なものを入手できるようになりました。直径60 mmで1,280円、80 mmで1,680円です。この値段だと複数個変える値段です。

Photo_20200605185001

 水晶玉とありますが、もちろん天然水晶であるはずはありません。Amazonのサイトには【K9クリスタル素材を採用、透明度が高いボール】とあります。K9というからには光学ガラスのクラウンガラスだと思いますが、K9というのは聞いたことがありません。調べてみたら、BK7と同じもののようです。BK7はホウケイ酸塩クラウン光学ガラスで、合成石英でもありません。ですので、水晶という表現は適切ではないのですが、実験道具としてはBK7で十分です。

人気ブログランキングへ

【関連記事】

 

 

| | コメント (0)

2020年5月 9日 (土)

レンチキュラーレンズで光学迷彩?(2) レンチキュラーレンズの仕組み

レンチキュラーレンズはどんなレンズ?

 レンチキュラーレンズは半透明の板状のプラスチック製レンズです。レンチキュラーレンズを触ってみると、片面はツルツルしていて、片面はザラザラしていることがわかります。良くみると、縦方向の縞模様が入っていることがわかります。

レンチキュラーレンズ

 レンチキュラーレンズの表面をルーペで拡大すると、次の図のように、細長いカマボコ状のものが並んでいることがわかります。このカマボコ状のものは、その一つ一つがシリンドリカルレンズになっています。

レンチキュラーレンズの表面を拡大してみると

シリンドリカルレンズとは

 次の写真のように、水を入れた牛乳びん越しに「あ」を見ると、びんが縦置きのときは左右が反転して横に伸びて見え、横置きのときは上下が反転して縦に伸びて見えますこのように方向で見え方が異なるのは、牛乳びんが円柱形をしているからです。

牛乳ビンのレンズ

 次の図のように、円柱の側面の一部を切り出した形のレンズをシリンドリカルレンズといいます。その形状からカマボコレンズと呼ばれることもあります。普通の球面レンズはどこを切り出しても断面に曲面がありますが、シリンドリカルレンズは曲面をもつ断面ABと、曲面をもたない断面CDがあります。

シリンドリカルレンズの構造

 そのため、シリンドリカルレンズには、レンズの働きをする向きと、働きをしない向きがあります。普通のレンズは次の図の左側のように光軸に平行な光を1点の焦点に集めますが、シリンドリカルレンズは光を直線上に集めます。

普通のレンズとシリンドリカルレンズの違い

 小さなシリンドリカルレンズをたくさん配列したレンズがレンチキュラーレンズです。レンチキュラーレンズを通してものを見たときに、『レンチキュラーレンズで光学迷彩?(1) 手品と物体の見え方』で紹介したような見え方になるのは、たくさん配列されているシリンドリカルレンズの働きによるものです。どうして、ものが消えたり、伸びて見えたりするかについては、次の機会に説明します。

レンチキュラーレンズという用語

 ところで、英語の『レンチキュラー(lenticular)』は「レンズの」「レンズ状の」「水晶体の」という意味です。ですので、レンチキュラーレズは「レンズのレンズ」「レンズ状のレンズ」で、「頭痛が痛い」「馬から落馬する」のような重言になっています。

 日本語特有の誤用かと思いましたが、英語版のWikipeidaではlenticular lenseとなっていますし、海外の多くのサイトでlenticula lensと表現されています。日本でもレンチキュラーレンズという表現が多いのですが、日本語版のWikipediaではレンチキュラーとなっています。なお、日本語版および英語版のWikipediaの解説は3Dやアニメーションを表示するためのレンチキュラーレンズが前提となった説明になっていて、レンチキュラーレンズそのものの説明になっていないようです。

人気ブログランキングへ

【関連記事】

 

| | コメント (0)

2020年4月30日 (木)

サイエンスコナン―レンズの不思議

サイエンスコナン―レンズの不思議 (小学館学習まんがシリーズ―名探偵コナン実験・観察ファイル)

青山 剛昌 (著), 金井 正幸, 岩岡 としえ, ガリレオ工房

子ども向けの学習漫画ですが、レンズの入門書として一冊持っていると良いと思います。レンズの機能や働きについて、いろいろな光の現象や実験から学ぶことができます。しっかりとした光学の原理に基づくコナン君の推理は、そりゃそうだと思いながらも、そうださすがコナン君と読み進めていくことができます。

出版社 / 著者からの内容紹介
子どもの「なぜ?」「どうして?」にコナンが答えていく『サイエンスコナン』。今回は、レンズの不思議に迫る。とっても身近なレンズなのに意外と知らないことだらけ。さてコナンはどのように謎ときをしてくれるか?

内容(「BOOK」データベースより)
コナンたちへ届いた、米花美術館からの一通の招待状。それは、レンズにまつわる難解な事件の幕開けだった…!コナンと仲間たちが実験を通して『レンズの不思議』を学び、事件を解明していくサイエンス物語。キミも、コナンと一緒に推理しよう。

単行本: 189ページ
出版社: 小学館 (2004/06)
ISBN-10: 4092961049
ISBN-13: 978-4092961043
発売日: 2004/06
商品の寸法: 18.2 x 12.8 x 2 cm

目次

  1. 怪盗赤メガネからの挑戦状!―レンズっていったいどんなもの?
  2. 虫メガネが謎のカギ!?―身近に使われているレンズ
  3. 観察して、真実を見極めろ!?―レンズで大きくしてみよう!
  4. 疑惑のペンション放火事件!!―レンズは光を集めるだけじゃない!?
  5. 事件のかげに黒ずくめの男!?―いろいろなレンズ大集合!!
  6. キヤノンのレンズ工場を見学せよ!―発見!レンズの作り方
  7. 2つのレンズで見えるものは…!?―2つのレンズを組み合わせてみよう!!
  8. 2つのレンズで暗号を解け!―3Dメガネを作って立体視をしてみよう!!
  9. 赤メガネの館の謎を解け!―身近な物でレンズを作ろう!!
  10. 事件解決!そして最後のテスト!?―世界で一番すばらしいレンズとは?

 

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2020年4月24日 (金)

レンズ  岩波写真文庫―田中長徳セレクション

レンズ  岩波写真文庫―田中長徳セレクション

日本の写真家、カメラ評論家の田中長徳(ちょうとく)セレクションの全5冊のうちの一冊です。

雑誌の付録や無料で配布されている小冊子のような装丁の本です。

紙質は悪くありません。写真や図が豊富ですが、すべて白黒です。

レンズに光が通る様子や、レンズでできる実像や虚像などの写真や解説図が豊富に掲載されています。レンズができるまでの様子をまとめたレンズ工場の取材写真も掲載されています。

手に取ると、この程度の小冊子でこの価格なの?と思いますが、中身はどうしてなかなか奧が深い内容で、写真だけでなく、読み物としても面白いです。

単行本: 63ページ
出版社: 岩波書店; 復刻版版 (2008/03)
ISBN-10: 4000282174
ISBN-13: 978-4000282178
発売日: 2008/03
商品の寸法: 17.8 x 12 x 0.8 cm

目次

光の性質
レンズの働き
レンズの製作
光学機械

 

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2020年4月23日 (木)

レンチキュラーレンズで光学迷彩?(1) 手品と物体の見え方

レンチキュラーレンズを使った手品

 レンチキュラーレンズという板状のレンズを通して物体を見えると、物体が消えて見えなくなる現象が起こります。この現象は手品でも利用されています。まずは次の手品の動画をご覧ください(BGMがかかっているので音量に注意してから再生してください)。

4D surprise + joke - Tenyo

 背面が横縞模様の壁になっている台の上に透明な箱を被せます。箱の向こうに背面の壁がしっかり見えていますが、この箱を開けると、なんと台の上に自由の女神が現れます。

レンチキュラーレンズを通して物体を見てみると

 つづいて、次の映像をご覧ください。解説は英語ですが、映像を見ると、レンチキュラーレンズを通して物体を見ると、どんな見え方になるかわかります。

A Real Invisibility Shield | How Does It Work?

横向きの2本の棒にプライヤーが立てかけられています。それらの前にレンチキュラーレンズを置くと、プライヤーが消え、横向きの2本の棒だけが見えます。しかも、2本の棒はプライヤーの後ろにあるのに、前面にあるように見えています。また、2分25秒ぐらいからになりますが、レンチキュラーレンズを棒の先端の方へ移動すると、棒が伸びて見えます。

なぜ、このような現象が生じるのかについては、後日、記事をアップします。

また、この現象は光学迷彩と言えるのでしょうか。

人気ブログランキングへ

【関連記事】

 

| | コメント (0)

2020年4月20日 (月)

レンズ (INAX BOOKLET)

レンズ (INAX BOOKLET)

レンズやカメラの中古の本にはなかなか面白いものがあります。

この本は顕微鏡・望遠鏡・カメラ・映写機など、レンズのはじまりから発展の歴史を中心に解説した本です。ガリレオ、ケプラー、ロバート・フックなどが残した昔の貴重な図なども掲載されています。見て・読んで面白いレンズの読み物です。

レンズのはじまりから、望遠鏡、顕微鏡、そしてカメラや映画につながる視覚装置の発達史と、現代の最先端技術を展望。「見る」ことの驚きと喜びに迫る。

単行本(ソフトカバー)
出版社: INAX出版 (1989/4/5)
言語 日本語
ISBN-10: 487275705X
ISBN-13: 978-4872757057
発売日: 1989/4/5
商品の寸法: 21 x 20.4 x 0.8 cm

目次

近代という名のレンズ
宇宙への扉 確かな感覚的経験
顕微鏡発達史 玩具から工芸品、そして科学の道具へ
光・レンズ・視覚装置
魔術的視覚の世界
レンズと人と動物
観察の新しい波 可視の闇、不可視の眼

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2020年4月16日 (木)

カメラ発明の日は3月19日ではなく8月19日

 カメラの語源は、ラテン語のカメラ・オブスキュラで、カメラは部屋、オブスキュラは暗いという意味です。大昔のカメラは内部が真っ暗な箱に小さい孔を開けた簡単な構造のものでした。レンズもついていなければ、フィルムもありません。小孔から差し込む光が、反対側の壁に物体の像を映し出すという、光のピンホール現象を利用したものです。

 カメラ・オブスキュラは天体の観測や絵を描く道具として使われていましたが、像を綺麗に映そうとすると像が暗くなるという問題がありました。この問題はピンホールに凸レンズをつけることで解決されました。レンズの利用によって、カメラ・オブスキュラはさらに実用的になりました。しかし、当時のカメラ・オブスキュラでは、映った像を写真として残すことはできませんでした。カメラ・オブスキュラの像をそのまま写真として残すことは人類の長年の夢だったのです。

 

1053

 1826年、フランスのニエプスは天然アスファルトを感光材に使って写真の撮影に成功しました。写真を1枚撮るのに8時間もかかりましたが、カメラ・オブスキュラの像を写真として残すことに成功したのです。ニエプスは同じフランスのダゲールと研究を進め、銀メッキした銅板の表面にヨウ化銀を付着させた板を使う方法を考えました。エニプスは途中で死んでしまいましたが、ダゲールはこの研究を進め、1839年に銀板写真を発明しました。この銀板写真法をダゲレオタイプといい、そのカメラをダゲレオタイプのカメラといいます。1回の撮影で一枚の写真しか撮れませんでしたが、非常に鮮明な写真を撮ることができ、しかも撮影時間は30分と大幅に短縮されました。

Photo

このあたりの詳しい話は、このブログで下記で、まとめてありますので、興味のある方はご覧いただければ幸いです。

ピンホール現象とカメラオブスクラ 写真の仕組み(1)

カメラオブスクラの像を写真に残す 写真の仕組み(2)

白黒写真の仕組み 写真の仕組み(3)

 さて、本題ですが、ダゲールは1839年の初頭に、フランス科学アカデミーの常任秘書のフランソワ・アラゴにダゲレオタイプのカメラの仕組みを秘密厳守で説明しています。アラゴはこの画期的な発明を理解し、ダゲールを支援しました。

 その後、フランス政府はダゲールのこの発明の権利を、ダゲールとニエプスの息子の終身の年金と引き換えに買い取りました。

 そして、このダゲレオタイプのカメラは1839年8月19日にパリで開催された科学アカデミーで紹介され公式にその発明が認められました。フランス政府はこの発明をフランスからの「世界への無償の贈り物」として発表し、その完全な手順書を公開しました。これにより、ニエプスとダゲールが発明した銀板写真は世界中に広まりました。

 ところで、国内の多くのサイトでカメラ発明の日は3月19日と説明されています。しかしながら、これは上述の通り8月19日の間違いではないかと思います。8を3と誤植した可能性が高いと思われます。海外のサイトでは、8月19日という説明が多いです。

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

より以前の記事一覧