色彩

2022年6月23日 (木)

真鯉と緋鯉の違い|緋鯉(ヒゴイ)が赤い理由

 先日、近所の河原を歩いたら真鯉(マゴイ)の群れを見つけました。なかなか壮観でしたが、しばらくすると緋鯉(ヒゴイ)が現れました。真鯉(マゴイ)の体色は黒色で緋鯉(ヒゴイ)の体色は赤色や赤黄色ですが、真鯉と緋鯉の違いは何でしょうか。

真鯉(マゴイ)と緋鯉(ヒゴイ)
真鯉(マゴイ)と緋鯉(ヒゴイ)

 真鯉も緋鯉もコイ目・コイ科に分類される同じ魚でコイのことです。コイは大型の淡水魚で、その名前は体が肥えていることや味が肥えていることに由来します。真鯉も緋鯉も天然のコイで全く同じ魚ですが、緋鯉を含む色鯉は真鯉の突然変異したものです。漢字の「緋」は火のような濃く明るい紅色を意味していますから、緋鯉は赤色のコイのことです。

 魚は色素胞と呼ばれる色素細胞を持っています。代表的なものはメラニン色素を含む黒色素胞、カロテノイドやプテリジンの色素を含む赤色素胞や黄色素胞でこれらは光吸収性色素胞といいます。また色素は含まれないが光を散乱反射する白色素胞、魚類独特の構造色による銀白色を呈するグアニン板状結晶を含む虹色素胞があります。これらの色素胞によって魚の体色が決まります。

 普通の真鯉はメラニンを含んだ黒色素胞が多いため黒色の体色をしています。ところが突然変異でメラニン色素の少ないコイが生まれることがあります。このような突然変異のコイはカロテノイド色素やプテリジン色素が多いため赤や赤黄色の体色になります。このようなコイを緋鯉(ヒゴイ)と呼びます。天然の緋鯉を飼育して品種改良したコイが美しい錦鯉(ニシキゴイ)です。この関係は真鮒(マブナ)、緋鮒(ヒブナ)、金魚も同じです。

 なお天然では緋鯉は目立つため天敵に狙われやすく大きく育つのは希です。写真の緋鯉は天然のものと考えられますが、色合いが悪くて売り物にならない錦鯉が放流されることもあるようです。

 ※写真に映っているコイが細長く見えるのは水面での光の屈折によるもので水底が浅く見える現象と同じです。

【関連記事】

花の色はいろいろ|花の色の仕組み

白いアジサイ「アナベル」はなぜ白いのか?

サクラ色はアントシアニン

玉虫色とは何色?

その色、どこから

ブログランキング・にほんブログ村へにほんブログ村

人気ブログランキングへ

 

 

| | | コメント (0)

2022年4月 8日 (金)

非常口の緑色と白色のおはなし

 次の図はよく建物の中で見かける非常口の標識です。下図の2つの標識はデザインは同じですが左側は「緑色の背景に白色の文字」、右側は「白色の背景に緑色の文字」です。どちらが正しい表示でしょう?

非常口の看板
非常口の看板

 答えはどちらも正しいです。この2つの標識はどちらも非常口に関係する標識で間違いありませんがその意味は全く異なります。実はこの2つの標識の違いは「消防法施行規則」の「誘導灯及び誘導標識の基準」で定められています。

 緑色の背景に白色の文字の標識は「避難口のある場所」を示します。ですからこの標識のあるドアは非常口そのものを意味します。一方、白色の背景に緑色の文字は「避難口への通路」を示します。こちらは非常口までの経路を示すものです。

 不幸にも火災に遭遇したときにこの知識があるとないとでは非常口へたどり着く時間も変わってきそうです。どっちだったっけ?となりそうなややこしいルールですが万一のときは緑地に白い文字の非常口を目指しましょう。

人気ブログランキングへ

 

| | | コメント (0)

2022年3月25日 (金)

青色光より短波長の光はなぜ紫色なのか|青紫と赤紫の違い

 虹やプリズムでできた光の色の帯を見ると青色光より短波長側に紫色光が見えます。紫色は青色に赤味が加わった色ですが、どうして青色光より短波長側に長波長側の赤色が混ざった紫色光が見えるのでしょうか。

虹の光の色の帯(連続スペクトル)
虹の光の色の帯(連続スペクトル)

 青色光より短波長側に紫色光が見えるのはヒトの色覚に関係しています。「視覚が生じる仕組み 色が見える仕組み(3)」で説明した通り、ヒトの網膜には赤・緑・青の光を感じる錐体細胞があります。次の図はヒトの平均的な色覚の応答を図で表したものです。R(赤色光)、G(緑色光)、B(青色光)のグラフは光の波長に対してそれぞれの色を感じる色覚の刺激の割合を示したものでG(緑色光)の最大の刺激値を1として標準化したものです。

Cie-1931-xyz
CIE 1931 XYZ等色関数

 この図を見ると青色と緑色に対する色覚はそれぞれ450 nm付近と550 nm付近を中心とする光に応答することがわかります。一方、赤色に対する色覚は主に600 nm付近を中心とする赤色光に応答しますが450 nm付近を中心とする青色光にも応答することがわかります。

 たとえば波長450 nm付近の光に対しては青色と赤色の色覚が応答しますが、青色と赤色の刺激値の差が大きいため青色と認識します。波長450 nmより短い波長の光に対しては青色と赤色の刺激値の差が小さいため青色に赤色が加わった紫色と認識することになるのです。この紫は青色の応答が多いので青紫色の光となります。

 さて光の三原色の混色では赤色光と青色光を混ぜるとマゼンタ(赤紫色)の光になります。赤色と青色の色覚がそれぞれ十分に応答するため赤紫色の光となります。マゼンタの光は前述の青紫色の光と異なり虹の中には存在しない色の光、つまり相当する波長の単色光がない光になります。ピンク色の単色光が存在しないのも同じ理由です。

 マゼンタについては「マゼンタのおはなし|単色光(波長)が存在しない色」に詳しく説明してあります。

【関連記事】

人気ブログランキングへ

 

| | | コメント (0)

2021年7月30日 (金)

見る―眼の誕生はわたしたちをどう変えたか

見る―眼の誕生はわたしたちをどう変えたか

サイモン・イングス (著) 吉田 利子 (翻訳)

 2009年に出版された本ですが、眼に関する様々なことが解説された本です。いろいろな動物の眼の進化や仕組みなどを解説しています。また、ヒトの視覚の研究の歴史についても触れられており、過去の科学者の取り組みなどを紹介しています。眼について光学と生物学だけではなく、幅広い分野の話を取り上げています。

Photo_20210730135201

単行本: 450ページ
出版社: 早川書房 (2009/1/23)
ISBN-10: 4152089997
ISBN-13: 978-4152089991
発売日: 2009/1/23
商品の寸法: 18.6 x 14.2 x 3.4 cm

【内容】

 光を効率よくとらえようとしてさまざまな生き物が眼を発達させ、見るという能力を獲得した。これまで見つかった最大の眼は、巨大なダイオウイカのもので、目玉の直径が40センチあったという。イカの眼とヒトの眼はまったく異なる進化をたどってきたものだが、それでも両者はじつによく似た構造をしているのだ。

 では、わたしたちはどうやってものを見ているのだろう。多くの哲学者や科学者がその謎に取り組んできた。プラトンは、眼がある種の光線を放射するおかげでものが見えるのだと唱えた。19世紀、死者の網膜には像が残ると言われ、殺人事件の捜査で眼球の写真が撮られた。色覚障害のあった科学者ドルトンは、自分の眼球の色が異なるのだと考え、死後に自分の眼を解剖させている。

 眼には想像以上の物語がある。眼の進化と意識、色覚や錯覚に隠された秘密、視覚の未来まで、眼と「見ること」のすべてを探る

 

・触れて触る眼―ホシバナモグラの鼻、ハダカデバネズミ
・カンブリア紀の大爆発と眼の誕生
・三葉虫のひさしを持った眼、あいだをおいてはめ込まれた眼
・ショウジョウバエの脚に作られた眼
・第三の眼、松果体
・「視光線」を放射している眼?
・色と言葉
・ステレオグラム
・殺人の原因にもなった視覚の化学
・虹が10色に見える4色型色覚をもつ女性
 その他

人気ブログランキングへ

| | | コメント (0)

2021年6月30日 (水)

オリンピックの五輪の色の意味は?

オリンピックシンボルとは

 オリンピックシンボルはオリンピック憲章第1章8で「単色または5色の同じ大きさの結び合う5つの輪」と定義されているオリンピック・リングで構成されるシンボルとされています。

オリンピックシンボル
オリンピックシンボル

オリンピック・リングの由来

 近代オリンピックの創立者のフランスのピエール・ド・クーベルタン男爵が1913年に考案したものです。

ピエール・ド・クーベルタン男爵
ピエール・ド・クーベルタン男爵

 その経緯として古代オリンピックが開催されたギリシアのデルフォイの祭壇にあった5つの輪を紋章が刻まれた石碑を参考に考案されたという説がありますが、この石碑は第11回ベルリンオリンピックの際に組織委員会の事務総長のカール・ディームが聖火リレーの式典の演出のために設置したものでした。式典は盛大に執り行われましたが、この石碑は撤去されませんでした。1950年代後半にアメリカ人作家のリン・プールとグレイ・プールがデルフォイを訪れたときにこの石を再発見し「古代競技の歴史(History of ancient Olympic games、1963年)」で紹介しました。この石碑は「カール・ディエムの石」として知られるようになり、オリンピック・リングのデザインは古代オリンピックに由来するものという説が流布しました。

オリンピック・リングの意味

 オリンピック・リングは白地に青、黄、黒、緑、赤の5つの輪が連なったものです。クーベルタン男爵はこの5つの輪をヨーロッパ大陸、アメリカ大陸、アフリカ大陸、アジア大陸、オセアニア大陸の5つの世界大陸に見立てました。また5つの大陸と色には関係がなく、どの輪がどの大陸を意味しているというような定義はされていません。白、青、黄、黒、緑、赤の6色はすべての参加国の国旗を再現できる色して選んだものとされています。 

 クーベルタン男爵は「Olympique 1913年8月号」において、「このように組み合わせられた6色(旗の白地を含む)は例外なくすべての国の色を再現している。スウェーデンの青と黄、ギリシャの青と白、フランス、イギリス、アメリカ、ドイツ、ベルギー、イタリア、ハンガリーの三色旗、スペインの黄と赤、ブラジルとオーストラリアの革新的な国旗、古代日本と現代中国の国旗も含まれている。まさに、国際的なエンブレムです」と述べています。

【関連記事】

1906年アテネオリンピック開催(1906年4月22日)

日本人が初めてオリンピック金メダル獲得(1928年8月2日)

1964年東京オリンピック開幕(1964年10月10日)

札幌オリンピック開幕(1972年2月3日)

男子100メートル「10秒の壁」を破った選手たち

ウサイン・ボルト選手の最高速度は時速何キロか?|ラップタイムと瞬間速度

ブログランキング・にほんブログ村へにほんブログ村

人気ブログランキングへ

| | | コメント (0)

2021年5月10日 (月)

マゼンタのおはなし|単色光(波長)が存在しない色

マゼンタとは

 「光の三原色」や「色の三原色」にマゼンタという名前の色が出てきます。マゼンタは日本語では紅紫色と言いますが、わかりやすく言うと鮮明な赤紫色のことです。

 光の色としてのマゼンタは光の三原色の赤色光と青色光を均等に混ぜたときにできる色です。

(R,G,B)=(255,0,255)=#ff00ff

 物体の色としてのマゼンタについては、

 CMYKのプロセス印刷のMは次のような色になります。

(R,G,B)=(236,0,140)=#ec008c

 JIS慣用色名ではマンセル値で5RP 5.5/14とされており、次のような色になります。これはCMYKのインクの色味とは異なります。

マンセル値 5RP 5.5/14 (R,G,B)=(197,78,160)=#c54ea0

マゼンタの由来 

 マゼンタは元々はイタリアのロンバルディア州ミラノ県に存在するマジェンタ(Magenta)という街(コムーネ)の名前に由来します。

 1859年4月29日に開戦した第二次イタリア独立戦争において、イタリア北部ロンバルディア地方マジェンタ近郊で同年年6月4日にマジェンタの戦い(伊: La Battaglia di Magenta)が起こりました。この戦いではサルデーニャ王国・フランスの連合軍とオーストリア帝国軍が戦い、連合軍が勝利を収めました。

 1858年にフランスの化学者フランソワ・エマニュエル・ベルガンがアニリンと四塩化炭素を混ぜた赤紫色の染料を作りました。この染料は1859年に工業化されフクシアの花の色にちなんで「フクシン」と名付けられました。また、同年にイギリスの化学者チェンバース・ニコルソンとジョージ・マウルが「フクシン」と同様の赤紫色のアニリン染料を作り、1860年に「ロゼイン」という名前でロンドンで製造を開始しました。

 これらの赤紫色の染料はマジェンタの戦いの戦勝を記念してマゼンタと呼ばれるようになりました。この戦いで活躍したフランスのズアーヴ兵の制服の赤紫色をマゼンタと呼ぶようになっていたという説もあります。。

フランスのズアーヴ兵(1858年頃)
フランスのズアーヴ兵(1858年頃)

マゼンタに対応する単色光は存在しない

 太陽光をプリズムで分散すると紫から赤に連続して変化する光の色の帯、すなわち可視光線の連続スペクトルが現れます。

短い ← 波長 → 長い
可視光線のスペクトル
可視光線のスペクトル

 この可視スペクトルには様々な色が存在しますが、その色の中にマゼンタは存在しません。同じ理由で虹の色にもマゼンタは存在しません。

虹の色にマゼンタは存在しない
虹の色にマゼンタは存在しない

 可視スペクトルの中にマゼンタの光が存在しないということは、マゼンタに対応する単色光(単一波長からなるの光)が存在しないということです。

 マゼンタは単色光の赤色光と緑色光を均等に混ぜたときにできる色です。マゼンタの光はヒトの網膜に存在する赤色光と青色光に反応する錐体細胞を刺激します。脳はその刺激を受け取るとマゼンタの色と認識します。これは光源の色としてのマゼンタの認識も物体の色としてマゼンタの認識も同じ仕組みです。このように私たちが認識している色は私たちヒトの色覚に密接に関係しています。

 私たちが認識している色は眼に入る光の情報をもとに脳内で作り出しているものです。もともと光や物体には色はついていません。脳がものに色をつけているのです。色の正体は私たちが作り上げた概念にすぎません。私たちが見ている色とりどりの景色は私たちの脳内で作り出されているバーチャルな世界と言えます。単色光が存在しないマゼンタの色が存在することは何ら不思議なことではありません。

マゼンタ(赤紫色)が見える理由

 前述の可視スペクトルをみると波長の短い方に紫色光、波長の長い方に赤色光が存在していることがわかります。このことを踏まえて考えると、赤色光と青色光を均等に混ぜるとその中間色の緑色が見えそうですが、実際には可視スペクトルの両端の色を連結するマゼンタ(赤紫色)が見えます。

色相環
色相環

 単色光の赤色光と青色光を混ぜるとどうしてマゼンタ(赤紫色)になるのかはヒトの色覚に深く関係しています。次の図は観測者の色覚の応答を数値で表した等色関数を図で表したものです。R(赤色光)、G(緑色光)、B(青色光)のグラフはそれぞれの色を感じる錐体細胞の刺激の割合を示したもの、G(緑色光)の刺激の最大値を1として標準化したものです。

CIE 1931 XYZ等色関数
CIE 1931 XYZ等色関数

 ここで注目すべきことは、赤色光に反応する錐体細胞は短波長側の青色光でも刺激を受けるということです。つまり、赤色光と青色光が均等に混じった光を受けると、赤色光と青色光の中間色の緑色にならず、マゼンタ(赤紫色)に見えるのです。

マゼンタは色覚の進化に関係している

 多くの動物は四原色の色覚(四色型色覚)を持っています。蝶などの昆虫は紫外線を見ることができ、鳥類や爬虫類の多くはヒトよりも色を見分ける能力が高く、より鮮やかな色の世界を見ています。これらの動物が色を見分ける能力が高いのは、それぞれの動物の生活環境に関係していると考えられます。昼行性の動物はより多く色を見分けられた方が有利だったのです。

 犬や猫など多くの哺乳類はニ原色の色覚(ニ色型色覚)しか持っていません。たとえば、犬は赤と緑を見分けることができません。そのため、緑色の芝生の上で赤色の花を見つけるのが苦手です。かつて哺乳類は夜行性だったため、色を見分けることよりも、暗いところで良く見える能力が必要でした。そこで色を感じる錐体細胞が2つになり、色は見分けられないが弱い光を感じることができる桿体細胞が発達しました。

 哺乳類の中でも霊長類の旧世界ザル(狭鼻小目)は三原色の色覚(三色型色覚)を持っています。いまから数千年前に赤色光に反応する錐体細胞の一部が変化し、緑色光に反応する錐体細胞ができ、3つの赤色錐体・緑色錐体・青色錐体(注)を有するようになったと考えられています。色を見分ける能力が向上したのは、森林で暮らすようになり、木々の緑の葉、さざまなな色の花や木の実を見分ける必要があったからかもしれません。

(注)最近は S 錐体(短波長)、M錐体 (中波長)、L錐体(長波長)と呼ばれる場合が多い。

人気ブログランキングへ

| | | コメント (0)

2020年12月14日 (月)

木々の葉が黄色や赤色に色付く理由|紅葉の仕組み

紅葉する樹木は

 秋が深まる頃、木々の葉が黄色や赤色に色づき、鮮やかな紅葉を楽しむことができます。紅葉とは樹木の葉が落葉の前に色が変わることですが、全ての全ての木が紅葉するわけではありません。紅葉するのはカエデやイチョウなどの落葉樹で、秋が深まると一斉に葉を落とします。一方、マツやスギなどの常葉樹は1年を通して深緑の葉を留めています。落葉樹のように一斉に葉を落とすことはありませんが、古くなった葉は落として、新しい葉に変えていきます。

Photo_20201214151901

葉はどうして緑色なのか

 植物は光合成によって無機物である二酸化炭素と水からブドウ糖をつくり、それをもとにデンプンやタンパク質など生きていくために必要なエネルギー源や体を作る物質を合成しています。光合成は葉の細胞に含まれている葉緑体で行われます。植物の葉が緑色に見えるのは細胞内に葉緑体がたくさん存在しているからです。葉緑体にはクロロフィル(葉緑素)という色素が含まれています。

光合成の仕組み
光合成の仕組み

 葉にはクロロフィル以外にもカロテノイドという黄、橙、赤色を示す色素が含まれています。しかし、光合成を盛んに行っている春や夏はクロロフィルの色素がたくさん存在するため、葉は全体としては緑色に見えます。

 次の図はクロロフィルの吸収スペクトルです。クロロフィルは500 nm以下の青色光と600 nm以上の赤色光を吸収し、500 nmから600 nmの緑や黄色の光を吸収せずに反射します。その反射した光が緑色や黄緑色に見えるのです。

クロロフィルの吸収スペクトル
クロロフィルの吸収スペクトル

どうして紅葉するのか

 木々の葉が色づくことをひとくちに紅葉と言いますが、紅葉には葉が赤色に変わる「紅葉」と黄色に変わる「黄葉」があります。落葉樹の葉の色が緑色から赤色や黄色に変わるのは、秋が深まって、気温が低下し、日照時間が短くなると、光合成が行われなくなるためです。光合成が行われなくなると、緑色の色素のクロロフィルが少なくなるため、それ以外の色素の色が現れてきます。

 イチョウなどの「黄葉」する葉はクロロフィルの量が少なくなると葉の中に存在していたカロテノイドの色が現れてきます。

 一方、カエデなどの「紅葉」する葉は紅葉の時期になると葉と枝の境に「離層」と呼ばれる細胞ができます。この細胞が葉と枝の間の物質の移動を遮断するため、光合成で作られていた糖分が葉の中に留まり、糖分の濃度が上がります。そこに日光が当たると、クロロフィルと糖分が反応してアントシアニンという赤色の色素が生じます。クロロフィルが少なくなり、アントシアニンの量が増えると、葉の表面が赤くなります。

カエデとイチョウ
カエデとイチョウ

 植物がもつ色素はクロロフィル、カロテノイド、アントシアニン以外のものもあります。花がさまざな色を呈するのも色素によるものです。

花の色と色素
花の色と色素

人気ブログランキングへ

【関連記事】

 

| | | コメント (0)

2020年11月18日 (水)

青は進めの真実|交通信号の色

 国際照明委員会(CIE)で定められた世界共通の交通信号の色は「緑・黄・赤」の3色です。航空関係などでは白や青の信号もありますが、CIEでは信号に使う光は「赤・黄・緑・青・白」の5色とし、それぞれの色の光の波長範囲や強さを定めています。

 日本では交通信号の色は「緑・黄・赤」ではなく「青・黄・赤」と認識されています。「青は進め」とは言いますが、「緑は進め」とは言いません。日本で現在使われている交通信号は確かに「青・黄・赤」に見えますが、昔使われていた交通信号は「緑・黄・赤」の3色でした。しかし、当時も「青は進め」と緑信号のことを青信号と呼んでいました。どうして緑なのに青なのでしょうか。

 これは日本人の青色に対する認識に由来します。日本人は昔から青色と緑色を明確に区別する文化をもっていませんでした。青色の範囲が広く、「青野菜」や「青々とした緑」など緑色も青色と呼ぶことが多かったのです。実際に明治生まれの自分の祖父も緑色を青色と言っていたことをよく覚えています。このような背景から、日本人は緑信号のことを青信号と呼んだわけです。

 しかしながら、近年では、日本人も青色と緑色を区別するようになりました。緑色を青色と呼ぶ人はほとんどいなくなりました。ですから、昔の緑信号では青信号と呼ぶのに違和感が出てきたのですが、慣習で青信号と呼んでいたわけです。

 そこで、現在の信号機では、CIEが規定している緑色信号の光の波長範囲で、なるべく青色に近い波長の光が採用されるようになりました。昔の信号よりはずいぶん青色に近い緑色になりました。

青信号
青信号

人気ブログランキングへ

| | | コメント (0)

2020年6月29日 (月)

白いアジサイ「アナベル」はなぜ白いのか?

近所の家の軒先でアジサイがとても綺麗に咲いていました。

アジサイ 紫陽花

 アジサイの花の色を左右する重要な物質は土壌中に含まれるアルミニウムです。アジサイの花の色素のデルフィニジンはアルミニウムと結びつくと青色に呈色し、アルミニウムが少ないと赤色に呈色する性質があります。

 アルミニウムは土壌中にたくさん含まれていますが、土壌が酸性だと溶け出しやすく、植物に吸収されやすくなります。一方、土壌がアルカリ性だと溶け出しにくくなります。

 同じ株に咲いているのに色の違う花をつけるのは、アジサイの根が四方八方に広がっているからです。雨が降ったり、水を与えているうちに、土壌の成分が流れ出したりして、酸性度やアルミニウムの量が変化すると、根が吸収するアルミニウムの量が変わるため、色が変わってくるのです。このあたりについては、本ブログ「光と色と:花の色はいろいろ」で解説しています。

 さて、写真の中に白いアジサイが咲いています。この白いアジサイはアナベルという品種です。アナベルはアルミニウムと結びつく色素をもっていないため、土壌の酸性度によって色が変わりません。アナベルは咲き始めの成長時期はクロロフィルにより、薄い緑色をしていますが、成長すると真っ白な花になります。

アナベル アジサイ

人気ブログランキングへ

【関連記事】

| | | コメント (0)

2020年5月22日 (金)

徹底図解 色のしくみ―初期の光学理論から色彩心理学・民族の色彩まで (カラー版徹底図解)

徹底図解 色のしくみ―初期の光学理論から色彩心理学・民族の色彩まで (カラー版徹底図解)

城 一夫 (著)

 光と色の基本的な性質について丁寧に解説した一冊です。光学や色彩学の基本、色が見える仕組み、色を表す仕組み、色を作る仕組みなど、多くのことが解説されています。どのようなことが取りあげられているかは下の目次を見るとわかると思います。

Photo_20200522112401

内容(「MARC」データベースより)

私たちの生活環境の中で、色彩がいかに重要な役割を果たしているかを、多角的な視座から考察。色彩の成り立ち、色の見え方、色の生理と心理、色の感情効果、そして色彩文化などの、「色のしくみ」を解明する。

単行本: 222ページ
出版社: 新星出版社 (2009/03)
ISBN-10: 4405106789
ISBN-13: 978-4405106789
発売日: 2009/03
商品の寸法: 21 x 15 x 2 cm

目次

はじめに 6

Image Gallery

宇宙と空の色 8
昆虫の色 10
海中の色 12

第1章 光と色 13

色研究の元祖、ニュートンとゲーテ 14
光-色の感覚を引きおこすもの 16
可視光線 18
光の反射、吸収、透過 20
色光の3原色、色材の3原色 22
光の色彩現象(1)屈折 24
光の色彩現象(2)散乱 26
光の色彩現象(3)回折と干渉 28
色の現象的分類 30
人工光 白熱灯と蛍光灯 32
光と色温度 34
光の明るさ(1)単位 36
光の明るさ(2)条件等色 38
光の明るさ(3)標準イルミナントと演色性 40
動植物の色素 42
染料 44
顔料 46
印刷インキ 48
塗料 50
絵の具、その他の色材 52
Column JlS慣用色名(1) 54

第2章 色が見えるしくみ 55

眼の構造と役割 56
網膜の役割 58
大脳のはたらき 60
色の知覚 62
明暗順応と色順応 64
比視感度とプルキニエ現象 66
色の恒常性と明るさの恒常性 68
残像 70
色相対比 72
明度対比、彩度対比 74
同化 76
視認性、誘目性、識別性 78
色記憶と記憶色 80
色の見え方 82
主観色とネオンカラー効果 84
錯視 86
Column JIS慣用色名(2) 88

第3章 色を表すしくみ 89

色の3属性 90
マンセル表色系 92
PCCS(日本色研配色体系) 94
NCS(Natural Color System) 96
XYZ表色系、L*a*b*表色系 98
色の伝達方法 100
色の記号で伝達する 102
測色値で伝える 104
Column JIS慣用色名(3) 106

第4章 混色と色再現 107

加法混色(1)同時加法混色 108
加法混色(2)中間混色 110
減法混色 112
印刷の色再現 114
写真の色再現 116
テレビの色再現 118
Column JIS慣用色名(4) 120

第5章 色と心理 121

共感覚 122
色の連想 124
色の寒暖感 126
膨張色と収縮色 128
色の軽重感、硬軟感 130
色に対するイメージ 132
投映法(投影法) 134
Column JIS慣用色名(5) 136

第6章 色彩調和論と配色調和 137

ゲーテの色彩調和論 138
シュヴルールの色彩調和論 140
オストワルトの色彩調和論 142
イッテンの色彩調和論 144
ジャッドの色彩調和論 146
代表的な配色(1) 148
代表的な配色(2) 150
代表的な配色(3) 152
代表的な配色(4) 154
慣用的な配色 156
配色の基礎用語 158
Column JIS慣用色名(6) 160

第7章 生活と色彩 161

景観と色彩 162
街並みと色彩 164
インテリアのカラーコーディネート 166
部屋の用途別のインテリアカラー 168
食物と色彩 170
家電の色 172
自動車の色 174
ケータイ(携帯電話)の色 176
CIカラー 178
安全色彩 180
Column JIS慣用色名(7) 182

第8章 これからの色彩 183

デジタル色彩(Digital Color) 184
発光ダイオード 186
ユニバーサルデザインと色彩 188
機能性色素 190
カラーマネジメント(Color Management) 192
癒しと色彩 194
Column JIS慣用色名(8) 196

第9章 世界各国の色彩文化 197

国旗と色彩 198
ヨーロッパの色(1)オランダ 200
ヨーロッパの色(2)ドイツ 202
ヨーロッパの色(3)イギリス 204
ヨーロッパの色(4)イタリア 206
ヨーロッパの色(5)フランス 208
アフリ力諸国の色 210
中南米諸国(ラテンアメリカ)の色 212
イスラム圏の色 214
アジアの色(1)中国 216
アジアの色(2)日本 218

さくいん 220
特別協力・おもな参考文献 223

 

人気ブログランキングへ

| | | コメント (0) | トラックバック (0)

より以前の記事一覧