色彩

2021年7月30日 (金)

見る―眼の誕生はわたしたちをどう変えたか

見る―眼の誕生はわたしたちをどう変えたか

サイモン・イングス (著) 吉田 利子 (翻訳)

 2009年に出版された本ですが、眼に関する様々なことが解説された本です。いろいろな動物の眼の進化や仕組みなどを解説しています。また、ヒトの視覚の研究の歴史についても触れられており、過去の科学者の取り組みなどを紹介しています。眼について光学と生物学だけではなく、幅広い分野の話を取り上げています。

Photo_20210730135201

単行本: 450ページ
出版社: 早川書房 (2009/1/23)
ISBN-10: 4152089997
ISBN-13: 978-4152089991
発売日: 2009/1/23
商品の寸法: 18.6 x 14.2 x 3.4 cm

【内容】

 光を効率よくとらえようとしてさまざまな生き物が眼を発達させ、見るという能力を獲得した。これまで見つかった最大の眼は、巨大なダイオウイカのもので、目玉の直径が40センチあったという。イカの眼とヒトの眼はまったく異なる進化をたどってきたものだが、それでも両者はじつによく似た構造をしているのだ。

 では、わたしたちはどうやってものを見ているのだろう。多くの哲学者や科学者がその謎に取り組んできた。プラトンは、眼がある種の光線を放射するおかげでものが見えるのだと唱えた。19世紀、死者の網膜には像が残ると言われ、殺人事件の捜査で眼球の写真が撮られた。色覚障害のあった科学者ドルトンは、自分の眼球の色が異なるのだと考え、死後に自分の眼を解剖させている。

 眼には想像以上の物語がある。眼の進化と意識、色覚や錯覚に隠された秘密、視覚の未来まで、眼と「見ること」のすべてを探る

 

・触れて触る眼―ホシバナモグラの鼻、ハダカデバネズミ
・カンブリア紀の大爆発と眼の誕生
・三葉虫のひさしを持った眼、あいだをおいてはめ込まれた眼
・ショウジョウバエの脚に作られた眼
・第三の眼、松果体
・「視光線」を放射している眼?
・色と言葉
・ステレオグラム
・殺人の原因にもなった視覚の化学
・虹が10色に見える4色型色覚をもつ女性
 その他

人気ブログランキングへ

| | | コメント (0)

2021年6月30日 (水)

オリンピックの五輪の色の意味は?

オリンピックシンボルとは

 オリンピックシンボルはオリンピック憲章第1章8で「単色または5色の同じ大きさの結び合う5つの輪」と定義されているオリンピック・リングで構成されるシンボルとされています。

オリンピックシンボル
オリンピックシンボル

オリンピック・リングの由来

 近代オリンピックの創立者のフランスのピエール・ド・クーベルタン男爵が1913年に考案したものです。

ピエール・ド・クーベルタン男爵
ピエール・ド・クーベルタン男爵

 その経緯として古代オリンピックが開催されたギリシアのデルフォイの祭壇にあった5つの輪を紋章が刻まれた石碑を参考に考案されたという説がありますが、この石碑は第11回ベルリンオリンピックの際に組織委員会の事務総長のカール・ディームが聖火リレーの式典の演出のために設置したものでした。式典は盛大に執り行われましたが、この石碑は撤去されませんでした。1950年代後半にアメリカ人作家のリン・プールとグレイ・プールがデルフォイを訪れたときにこの石を再発見し「古代競技の歴史(History of ancient Olympic games、1963年)」で紹介しました。この石碑は「カール・ディエムの石」として知られるようになり、オリンピック・リングのデザインは古代オリンピックに由来するものという説が流布しました。

オリンピック・リングの意味

 オリンピック・リングは白地に青、黄、黒、緑、赤の5つの輪が連なったものです。クーベルタン男爵はこの5つの輪をヨーロッパ大陸、アメリカ大陸、アフリカ大陸、アジア大陸、オセアニア大陸の5つの世界大陸に見立てました。また5つの大陸と色には関係がなく、どの輪がどの大陸を意味しているというような定義はされていません。白、青、黄、黒、緑、赤の6色はすべての参加国の国旗を再現できる色して選んだものとされています。 

 クーベルタン男爵は「Olympique 1913年8月号」において、「このように組み合わせられた6色(旗の白地を含む)は例外なくすべての国の色を再現している。スウェーデンの青と黄、ギリシャの青と白、フランス、イギリス、アメリカ、ドイツ、ベルギー、イタリア、ハンガリーの三色旗、スペインの黄と赤、ブラジルとオーストラリアの革新的な国旗、古代日本と現代中国の国旗も含まれている。まさに、国際的なエンブレムです」と述べています。

人気ブログランキングへ

| | | コメント (0)

2021年5月10日 (月)

マゼンタのおはなし|単色光(波長)が存在しない色

マゼンタとは

 「光の三原色」や「色の三原色」にマゼンタという名前の色が出てきます。マゼンタは日本語では紅紫色と言いますが、わかりやすく言うと鮮明な赤紫色のことです。

 光の色としてのマゼンタは光の三原色の赤色光と青色光を均等に混ぜたときにできる色です。

(R,G,B)=(255,0,255)=#ff00ff

 物体の色としてのマゼンタについては、

 CMYKのプロセス印刷のMは次のような色になります。

(R,G,B)=(236,0,140)=#ec008c

 JIS慣用色名ではマンセル値で5RP 5.5/14とされており、次のような色になります。これはCMYKのインクの色味とは異なります。

マンセル値 5RP 5.5/14 (R,G,B)=(197,78,160)=#c54ea0

マゼンタの由来 

 マゼンタは元々はイタリアのロンバルディア州ミラノ県に存在するマジェンタ(Magenta)という街(コムーネ)の名前に由来します。

 1859年4月29日に開戦した第二次イタリア独立戦争において、イタリア北部ロンバルディア地方マジェンタ近郊で同年年6月4日にマジェンタの戦い(伊: La Battaglia di Magenta)が起こりました。この戦いではサルデーニャ王国・フランスの連合軍とオーストリア帝国軍が戦い、連合軍が勝利を収めました。

 1859年にフランスの化学者フランソワ・エマニュエル・ベルガンがアニリンと四塩化炭素を混ぜた赤紫色の染料を作り、フクシアの花の色にちなんで「フクシン」と名付けました。また、同年にイギリスの化学者チェンバース・ニコルソンとジョージ・マウルが「フクシン」と同様の赤紫色のアニリン染料を作り、1860年に「ロゼイン」という名前でロンドンで製造を開始しました。

 これらの赤紫色の染料はマジェンタの戦いの戦勝を記念してマゼンタと呼ばれるようになりました。この戦いで活躍したフランスのズアーヴ兵の制服の赤紫色をマゼンタと呼ぶようになっていたという説もあります。。

フランスのズアーヴ兵(1858年頃)
フランスのズアーヴ兵(1858年頃)

マゼンタに対応する単色光は存在しない

 太陽光をプリズムで分散すると紫から赤に連続して変化する光の色の帯、すなわち可視光線の連続スペクトルが現れます。

短い ← 波長 → 長い
可視光線のスペクトル
可視光線のスペクトル

 この可視スペクトルには様々な色が存在しますが、その色の中にマゼンタは存在しません。同じ理由で虹の色にもマゼンタは存在しません。

虹の色にマゼンタは存在しない
虹の色にマゼンタは存在しない

 可視スペクトルの中にマゼンタの光が存在しないということは、マゼンタに対応する単色光(単一波長からなるの光)が存在しないということです。

 マゼンタは単色光の赤色光と緑色光を均等に混ぜたときにできる色です。マゼンタの光はヒトの網膜に存在する赤色光と青色光に反応する錐体細胞を刺激します。脳はその刺激を受け取るとマゼンタの色と認識します。これは光源の色としてのマゼンタの認識も物体の色としてマゼンタの認識も同じ仕組みです。このように私たちが認識している色は私たちヒトの色覚に密接に関係しています。

 私たちが認識している色は眼に入る光の情報をもとに脳内で作り出しているものです。もともと光や物体には色はついていません。脳がものに色をつけているのです。色の正体は私たちが作り上げた概念にすぎません。私たちが見ている色とりどりの景色は私たちの脳内で作り出されているバーチャルな世界と言えます。単色光が存在しないマゼンタの色が存在することは何ら不思議なことではありません。

マゼンタ(赤紫色)が見える理由

 前述の可視スペクトルをみると波長の短い方に紫色光、波長の長い方に赤色光が存在していることがわかります。このことを踏まえて考えると、赤色光と青色光を均等に混ぜるとその中間色の緑色が見えそうですが、実際には可視スペクトルの両端の色を連結するマゼンタ(赤紫色)が見えます。

色相環
色相環

 単色光の赤色光と青色光を混ぜるとどうしてマゼンタ(赤紫色)になるのかはヒトの色覚に深く関係しています。次の図は観測者の色覚の応答を数値で表した等色関数を図で表したものです。R(赤色光)、G(緑色光)、B(青色光)のグラフはそれぞれの色を感じる錐体細胞の刺激の割合を示したもの、G(緑色光)の刺激の最大値を1として標準化したものです。

CIE 1931 XYZ等色関数
CIE 1931 XYZ等色関数

 ここで注目すべきことは、赤色光に反応する錐体細胞は短波長側の青色光でも刺激を受けるということです。つまり、赤色光と青色光が均等に混じった光を受けると、赤色光と青色光の中間色の緑色にならず、マゼンタ(赤紫色)に見えるのです。

マゼンタは色覚の進化に関係している

 多くの動物は四原色の色覚(四色型色覚)を持っています。蝶などの昆虫は紫外線を見ることができ、鳥類や爬虫類の多くはヒトよりも色を見分ける能力が高く、より鮮やかな色の世界を見ています。これらの動物が色を見分ける能力が高いのは、それぞれの動物の生活環境に関係していると考えられます。昼行性の動物はより多く色を見分けられた方が有利だったのです。

 犬や猫など多くの哺乳類はニ原色の色覚(ニ色型色覚)しか持っていません。たとえば、犬は赤と緑を見分けることができません。そのため、緑色の芝生の上で赤色の花を見つけるのが苦手です。かつて哺乳類は夜行性だったため、色を見分けることよりも、暗いところで良く見える能力が必要でした。そこで色を感じる錐体細胞が2つになり、色は見分けられないが弱い光を感じることができる桿体細胞が発達しました。

 哺乳類の中でも霊長類の旧世界ザル(狭鼻小目)は三原色の色覚(三色型色覚)を持っています。いまから数千年前に赤色光に反応する錐体細胞の一部が変化し、緑色光に反応する錐体細胞ができ、3つの赤色錐体・緑色錐体・青色錐体(注)を有するようになったと考えられています。色を見分ける能力が向上したのは、森林で暮らすようになり、木々の緑の葉、さざまなな色の花や木の実を見分ける必要があったからかもしれません。

(注)最近は S 錐体(短波長)、M錐体 (中波長)、L錐体(長波長)と呼ばれる場合が多い。

人気ブログランキングへ

| | | コメント (0)

2020年12月14日 (月)

木々の葉が黄色や赤色に色付く理由|紅葉の仕組み

紅葉する樹木は

 秋が深まる頃、木々の葉が黄色や赤色に色づき、鮮やかな紅葉を楽しむことができます。紅葉とは樹木の葉が落葉の前に色が変わることですが、全ての全ての木が紅葉するわけではありません。紅葉するのはカエデやイチョウなどの落葉樹で、秋が深まると一斉に葉を落とします。一方、マツやスギなどの常葉樹は1年を通して深緑の葉を留めています。落葉樹のように一斉に葉を落とすことはありませんが、古くなった葉は落として、新しい葉に変えていきます。

Photo_20201214151901

葉はどうして緑色なのか

 植物は光合成によって無機物である二酸化炭素と水からブドウ糖をつくり、それをもとにデンプンやタンパク質など生きていくために必要なエネルギー源や体を作る物質を合成しています。光合成は葉の細胞に含まれている葉緑体で行われます。植物の葉が緑色に見えるのは細胞内に葉緑体がたくさん存在しているからです。葉緑体にはクロロフィル(葉緑素)という色素が含まれています。

光合成の仕組み
光合成の仕組み

 葉にはクロロフィル以外にもカロテノイドという黄、橙、赤色を示す色素が含まれています。しかし、光合成を盛んに行っている春や夏はクロロフィルの色素がたくさん存在するため、葉は全体としては緑色に見えます。

 次の図はクロロフィルの吸収スペクトルです。クロロフィルは500 nm以下の青色光と600 nm以上の赤色光を吸収し、500 nmから600 nmの緑や黄色の光を吸収せずに反射します。その反射した光が緑色や黄緑色に見えるのです。

クロロフィルの吸収スペクトル
クロロフィルの吸収スペクトル

どうして紅葉するのか

 木々の葉が色づくことをひとくちに紅葉と言いますが、紅葉には葉が赤色に変わる「紅葉」と黄色に変わる「黄葉」があります。落葉樹の葉の色が緑色から赤色や黄色に変わるのは、秋が深まって、気温が低下し、日照時間が短くなると、光合成が行われなくなるためです。光合成が行われなくなると、緑色の色素のクロロフィルが少なくなるため、それ以外の色素の色が現れてきます。

 イチョウなどの「黄葉」する葉はクロロフィルの量が少なくなると葉の中に存在していたカロテノイドの色が現れてきます。

 一方、カエデなどの「紅葉」する葉は紅葉の時期になると葉と枝の境に「離層」と呼ばれる細胞ができます。この細胞が葉と枝の間の物質の移動を遮断するため、光合成で作られていた糖分が葉の中に留まり、糖分の濃度が上がります。そこに日光が当たると、クロロフィルと糖分が反応してアントシアニンという赤色の色素が生じます。クロロフィルが少なくなり、アントシアニンの量が増えると、葉の表面が赤くなります。

カエデとイチョウ
カエデとイチョウ

 植物がもつ色素はクロロフィル、カロテノイド、アントシアニン以外のものもあります。花がさまざな色を呈するのも色素によるものです。

花の色と色素
花の色と色素

人気ブログランキングへ

【関連記事】

 

| | | コメント (0)

2020年11月18日 (水)

青は進めの真実|交通信号の色

 国際照明委員会(CIE)で定められた世界共通の交通信号の色は「緑・黄・赤」の3色です。航空関係などでは白や青の信号もありますが、CIEでは信号に使う光は「赤・黄・緑・青・白」の5色とし、それぞれの色の光の波長範囲や強さを定めています。

 日本では交通信号の色は「緑・黄・赤」ではなく「青・黄・赤」と認識されています。「青は進め」とは言いますが、「緑は進め」とは言いません。日本で現在使われている交通信号は確かに「青・黄・赤」に見えますが、昔使われていた交通信号は「緑・黄・赤」の3色でした。しかし、当時も「青は進め」と緑信号のことを青信号と呼んでいました。どうして緑なのに青なのでしょうか。

 これは日本人の青色に対する認識に由来します。日本人は昔から青色と緑色を明確に区別する文化をもっていませんでした。青色の範囲が広く、「青野菜」や「青々とした緑」など緑色も青色と呼ぶことが多かったのです。実際に明治生まれの自分の祖父も緑色を青色と言っていたことをよく覚えています。このような背景から、日本人は緑信号のことを青信号と呼んだわけです。

 しかしながら、近年では、日本人も青色と緑色を区別するようになりました。緑色を青色と呼ぶ人はほとんどいなくなりました。ですから、昔の緑信号では青信号と呼ぶのに違和感が出てきたのですが、慣習で青信号と呼んでいたわけです。

 そこで、現在の信号機では、CIEが規定している緑色信号の光の波長範囲で、なるべく青色に近い波長の光が採用されるようになりました。昔の信号よりはずいぶん青色に近い緑色になりました。

青信号
青信号

人気ブログランキングへ

| | | コメント (0)

2020年6月29日 (月)

白いアジサイ「アナベル」はなぜ白いのか?

近所の家の軒先でアジサイがとても綺麗に咲いていました。

アジサイ 紫陽花

 アジサイの花の色を左右する重要な物質は土壌中に含まれるアルミニウムです。アジサイの花の色素のデルフィニジンはアルミニウムと結びつくと青色に呈色し、アルミニウムが少ないと赤色に呈色する性質があります。

 アルミニウムは土壌中にたくさん含まれていますが、土壌が酸性だと溶け出しやすく、植物に吸収されやすくなります。一方、土壌がアルカリ性だと溶け出しにくくなります。

 同じ株に咲いているのに色の違う花をつけるのは、アジサイの根が四方八方に広がっているからです。雨が降ったり、水を与えているうちに、土壌の成分が流れ出したりして、酸性度やアルミニウムの量が変化すると、根が吸収するアルミニウムの量が変わるため、色が変わってくるのです。このあたりについては、本ブログ「光と色と:花の色はいろいろ」で解説しています。

 さて、写真の中に白いアジサイが咲いています。この白いアジサイはアナベルという品種です。アナベルはアルミニウムと結びつく色素をもっていないため、土壌の酸性度によって色が変わりません。アナベルは咲き始めの成長時期はクロロフィルにより、薄い緑色をしていますが、成長すると真っ白な花になります。

アナベル アジサイ

人気ブログランキングへ

【関連記事】

| | | コメント (0)

2020年5月22日 (金)

徹底図解 色のしくみ―初期の光学理論から色彩心理学・民族の色彩まで (カラー版徹底図解)

徹底図解 色のしくみ―初期の光学理論から色彩心理学・民族の色彩まで (カラー版徹底図解)

城 一夫 (著)

 光と色の基本的な性質について丁寧に解説した一冊です。光学や色彩学の基本、色が見える仕組み、色を表す仕組み、色を作る仕組みなど、多くのことが解説されています。どのようなことが取りあげられているかは下の目次を見るとわかると思います。

Photo_20200522112401

内容(「MARC」データベースより)

私たちの生活環境の中で、色彩がいかに重要な役割を果たしているかを、多角的な視座から考察。色彩の成り立ち、色の見え方、色の生理と心理、色の感情効果、そして色彩文化などの、「色のしくみ」を解明する。

単行本: 222ページ
出版社: 新星出版社 (2009/03)
ISBN-10: 4405106789
ISBN-13: 978-4405106789
発売日: 2009/03
商品の寸法: 21 x 15 x 2 cm

目次

はじめに 6

Image Gallery

宇宙と空の色 8
昆虫の色 10
海中の色 12

第1章 光と色 13

色研究の元祖、ニュートンとゲーテ 14
光-色の感覚を引きおこすもの 16
可視光線 18
光の反射、吸収、透過 20
色光の3原色、色材の3原色 22
光の色彩現象(1)屈折 24
光の色彩現象(2)散乱 26
光の色彩現象(3)回折と干渉 28
色の現象的分類 30
人工光 白熱灯と蛍光灯 32
光と色温度 34
光の明るさ(1)単位 36
光の明るさ(2)条件等色 38
光の明るさ(3)標準イルミナントと演色性 40
動植物の色素 42
染料 44
顔料 46
印刷インキ 48
塗料 50
絵の具、その他の色材 52
Column JlS慣用色名(1) 54

第2章 色が見えるしくみ 55

眼の構造と役割 56
網膜の役割 58
大脳のはたらき 60
色の知覚 62
明暗順応と色順応 64
比視感度とプルキニエ現象 66
色の恒常性と明るさの恒常性 68
残像 70
色相対比 72
明度対比、彩度対比 74
同化 76
視認性、誘目性、識別性 78
色記憶と記憶色 80
色の見え方 82
主観色とネオンカラー効果 84
錯視 86
Column JIS慣用色名(2) 88

第3章 色を表すしくみ 89

色の3属性 90
マンセル表色系 92
PCCS(日本色研配色体系) 94
NCS(Natural Color System) 96
XYZ表色系、L*a*b*表色系 98
色の伝達方法 100
色の記号で伝達する 102
測色値で伝える 104
Column JIS慣用色名(3) 106

第4章 混色と色再現 107

加法混色(1)同時加法混色 108
加法混色(2)中間混色 110
減法混色 112
印刷の色再現 114
写真の色再現 116
テレビの色再現 118
Column JIS慣用色名(4) 120

第5章 色と心理 121

共感覚 122
色の連想 124
色の寒暖感 126
膨張色と収縮色 128
色の軽重感、硬軟感 130
色に対するイメージ 132
投映法(投影法) 134
Column JIS慣用色名(5) 136

第6章 色彩調和論と配色調和 137

ゲーテの色彩調和論 138
シュヴルールの色彩調和論 140
オストワルトの色彩調和論 142
イッテンの色彩調和論 144
ジャッドの色彩調和論 146
代表的な配色(1) 148
代表的な配色(2) 150
代表的な配色(3) 152
代表的な配色(4) 154
慣用的な配色 156
配色の基礎用語 158
Column JIS慣用色名(6) 160

第7章 生活と色彩 161

景観と色彩 162
街並みと色彩 164
インテリアのカラーコーディネート 166
部屋の用途別のインテリアカラー 168
食物と色彩 170
家電の色 172
自動車の色 174
ケータイ(携帯電話)の色 176
CIカラー 178
安全色彩 180
Column JIS慣用色名(7) 182

第8章 これからの色彩 183

デジタル色彩(Digital Color) 184
発光ダイオード 186
ユニバーサルデザインと色彩 188
機能性色素 190
カラーマネジメント(Color Management) 192
癒しと色彩 194
Column JIS慣用色名(8) 196

第9章 世界各国の色彩文化 197

国旗と色彩 198
ヨーロッパの色(1)オランダ 200
ヨーロッパの色(2)ドイツ 202
ヨーロッパの色(3)イギリス 204
ヨーロッパの色(4)イタリア 206
ヨーロッパの色(5)フランス 208
アフリ力諸国の色 210
中南米諸国(ラテンアメリカ)の色 212
イスラム圏の色 214
アジアの色(1)中国 216
アジアの色(2)日本 218

さくいん 220
特別協力・おもな参考文献 223

 

人気ブログランキングへ

| | | コメント (0) | トラックバック (0)

2020年5月19日 (火)

色彩学貴重書図説―ニュートン・ゲーテ・シュヴルール・マンセルを中心に

色彩学貴重書図説―ニュートン・ゲーテ・シュヴルール・マンセルを中心に

北畠 耀

 これも中古本になりますが、光や色彩の探求の歴史上重要な資料が多数掲載されています。題名の色彩学「貴重書」図説の通りです。冒頭は古代壁画などの解説に始まります。また、ニュートンが光についてどのような実験をやったのかなど、ニュートンが描いた図を見ることができます。ゲーテの色彩に関するニュートンへの反論なども図で楽しむことができます。

色彩学貴重書辞典

内容(「MARC」データベースより)

 哲学者としてのニュートン、自然科学者としてのゲーテ、色彩調和論の先駆者シュヴルール、“色のものさし”を創案したマンセルを中心に取り上げ紹介。色彩の入門者を歴史探訪へ誘う、しかも見て楽しい色の画集のような一冊。

 “色彩文化の歴史的記念碑”あるいは“色彩学三代古典書”と呼ばれる貴重書に、科学史を転換させたニュートンの『光学』(1706)、文豪ゲーテが20年をかけた壮大な著作『色彩論』(1818)、印象派画家から「色のバイブル」と呼ばれた化学者シュブルールの『色の同時対比の法則』(1938)があります。豊かな社会が到来した20世紀には、徐々に色彩計画の重要性が増し「色のものさし」が求められました。このときマンセルは『色表記法』(1905)で画期的な提案を行い、彼が創案したカラースケールは、学問分野のみならず全産業に大きく貢献しました。

 本書では、上記4人の著書の図説を中心に、主に16世紀から今日までの色彩学の発展に貢献した重要な書籍を図説で解説。色彩研究史年表も充実させました。

単行本:101ページ
出版社::日本塗料工業会 (2006/04)
ISBN-10::4841904158
ISBN-13::978-4841904154
発売日:2006/04

目次

01. 古代社会における色彩象徴
02. 古代ギリシアの世界観
03. 中世の色彩文化
04. ルネサンスの造形術と色彩書
05. 17世紀における色彩体系の発想
06. 科学革命時代の群像
07. 哲学者としてのニュートン
08. 自然科学者としてのゲーテ
09. 色彩調和論の先覚者シュヴルール
10. 複製術(版画・印刷・織布・写真)の開発者たち
11. 色を音の類比で構想したフィールド
12. 明治初期の初等教科書『色圖問答』
13. 産業の色彩と教育の色彩
14. “色のものさし”の創案者マンセル
15. 色空間で調和を論じたオストワルト
16. 色名体系の登場と発展
17. メルツ&ポール色名辞典
18. ISCC-NBS色名法
19. 18世紀以降の色彩体系の展開
20. XYZによる表色系の統括
APPENDIX
色と光の文化史年表
色と光の探求者関連年表

巻末折り込み:
太陽光のスペクトルとシュヴルール色相との対応図

 

人気ブログランキングへ

| | | コメント (0) | トラックバック (0)

2020年5月17日 (日)

色彩の科学

色彩の科学 (岩波新書)

金子 隆芳 (著)

 初版1988年でいまだ新品で購入できます。自分の手元の本は2010年第10版でした。これだけ長く販売され続けている理由はこの本を読んでみればわかります。

 ニュートンの色彩論を皮切りに色彩の科学を、その発展の歴史とともに解説していきます。原著論文までしっかりと参照されており、ニュートン、ヤング、マクスウェル、ヘルムホルツなど色彩学の発展に関わる当時の科学者たちがたくさん登場し、彼らが実際に実験に用いた装置の写真や図が丁寧な説明とともに掲載されています。そして、現代色彩論の解説と展開しています。第9章「ゲーテの色の現象学」、第10章「ヘリングの心理学的色覚説」、第11章「物体色の色彩論」で色の本質にせまります。

 色彩を勉強する人にはおすすめの一冊です。

Photo_20200517111901

 内容(「BOOK」データベースより)

 豊かな色彩に囲まれた私たちの世界。だが「色が見える」とはどういうことなのだろうか?ニュートンやゲーテの色彩論以来、さまざまな人々がこの問題に取り組んできた。それらの成果を踏まえて、色覚異常や動物の色覚からイマジナリー・カラー、色ベクトルなどの最新理論まで、多岐にわたる色彩の世界を、物理学・心理学の両面から論じる。

新書: 220ページ
出版社: 岩波書店 (1988/10/20)
言語: 日本語
ISBN-10: 4004300444
ISBN-13: 978-4004300441
発売日: 1988/10/20
梱包サイズ: 17.2 x 10.4 x 1.2 cm

目次

1 ニュートン色彩論
2 色覚の三史
3 ヘルムホルツ三色説
4 測色学の祖・マクスウェル
5 現代色彩論の基本思想
6 現代色彩論のXYZ
7 ヘルムホルツ三原色と色覚異常
8 動物の色覚・処女開眼者の色覚
9 ゲーテの色の現象学
10 ヘリングの心理学的色覚説
11 物体色の色彩論
12 カラー・オーダー・システム

人気ブログランキングへ

| | | コメント (0)

2020年5月14日 (木)

光の三原色の波長はどのように決まったのか 色が見える仕組み(8)

光の三原色の歴史

 ニュートンが1666年に行ったプリズムで虹をつくる実験をきっかけに「人間の眼はどのようにして色を感じているのか?」という疑問に関心が集まるようになりました。ニュートンをはじめ当時の学者たちは、人間の眼の中には光の色の数に相当する多種類の視細胞があると考えました。この考えに疑問をもったのがヤングでした。

ヒトの眼が色を感じる仕組みの探究のはじまり

 ヤングは1801年に絵の具の混色からヒントを得て「人間の眼の中には赤・緑・青の光を感じる視細胞があり、色は3つの視細胞が受けた刺激の割合で決まる」という三色説を提唱しました。ヤングの仮説は正しかったのですが、当時は光の混色実験が難しく再現性も乏しかったためまったく支持されませんでした。

 1860年、マクスウェルは色分けされた円板を回転させると別の色が見え、ある割合にすると白色に見えるという実験を行いました。Maxwellはこの実験で時間の経過とともに目に入る色光を変えて色をつくる継時加法混色を示したのです。

マクスウェルの円盤

この実験については、スコットランドの国立博物館のサイト(英語)に説明があります。当時の円板の写真も掲載されています。

彼は下記の装置で赤・緑・青の光の混合実験を行い、この3つの色光で白色光を作り出し、また様々な色を作り出せる可能性を示しました。

マクスウェルの箱

この装置を用いた実験については下記の論文に示されています。CAの方向から白色光を入れます。CBの間から入った白色光はミラーMで反射し、レンズLで集光されてEに向かいます。BAの間から入った白色光はスリットXYZを通って3つの白色光になります。3つの白色光はプリズムPで分光されて赤・緑・青の光となり、その後プリズムP'を通って混色され、レンズLをで集光されてEに向かいます。Eから覗くと、光の色を観察することができるようになっています。3色の光の強さはスリットXYZの位置と幅で調整することができます。BAから入ってEから出てくる光とCBから入ってEから出てくる白色光を比較し、BAからの混色された光がCBからの白色光と同じになるようにXYZを調整しました。


On the Theory of Compound Colours, and the Relations of the Colours of the Spectrum.
Philosophical Transactions, Vol. 150 pp. 57–84. 1 January 1860.
PDF https://www.jstor.org/stable/pdf/108759.pdf
本論文はJames Clerk Maxwellの単著となっていますが、この実験には夫人のKatherine Clerk Maxwellが貢献しています。この著書には観察者が2人出てきます。一人はJ.C. Maxwell本人ですが、本文中に出てくるもう一人の観測者Kは夫人のKatherineです。

 1868年、ヘルムホルツはヤングの3色説を定量的に解明し、ヤングの3色説が正しいことを説明しました。これをヤング・ヘルムホルツの三色説と言います。下図はヘルムホルツが求めた各錐体の分光感度曲線です。

ヤング・ヘルムホルツの三色説

こうしてヤング、マクスウェル、ヘルムホルツによって、三色説が有力な仮説となりました。

ヤング、マクスウェル、ヘルムホルツ

 1956年、スウェーデンの生理学者Gunnar Svaetichinは魚の網膜を調べ、青、緑、赤の3つの波長の光に特異的な感度を示すことを発見しまました。これは、ヤング・ヘルムホルツ三原色説を支持する最初の生理学的な実証となりました。


Spectral response curves from single cones,
Svaetichin, G., Actaphysiol. scand. 39, Suppl. 134, 17-46, 1956

網膜に赤・緑・青の光を感じる3種類の錐体細胞が存在することが確認されたのは1964年のことです。Marksらは錐体細胞を通した光と、錐体細胞を通していない光を比較することにより、光のスペ クトルの差を求め、網膜には 445nm(青)、535nm(緑)、570nm(赤)にピークをもつ3種類の視物質が存在することを証明しました。


Visual pigment of single primate canes.
Marks WB, Dobelle WH, MacNichol EF Jr:Science 143; 1181-1183, 1964.

 3種類の錐体の感度がもっとも高い波長は赤錐体450 nm、緑錐体530 nm、青錐体560 nmですが、それぞれの感度曲線は次の図のようにある程度の幅を持っています。

分光感度曲線

 青錐体はほぼ青色光に対応する感度分布になっていますが、緑錐体と赤錐体の感度分布は幅が広く、赤錐体は緑錐体よりも長波長側にシフトしているものの広い範囲で重複しています。青色の光に対しては、青錐体・緑錐体・赤錐体のすべてが応答することがわかります。この図を見てもわかるように、ある波長の光に対してひとつの錐体が応答するわけではありません。そのため、青錐体・緑錐体・赤錐体は波長の短(S)、中(M)、長(L)でそれぞれS錐体・M錐体・L錐体と呼ぶ場合もあります。

光の三原色を再現する等色

 マクスウェルの実験からも分かる通り、赤・緑・青の光を任意に混合すると、様々な色を作ることができます。これは私たちが見ている色を光の三原色で再現できるということです。3色の光でどれぐらいの色を再現できるかは次の図のような装置を使うことで確認できます。例えば、白色光をプリズムで分けて得られる波長約490 nmのシアン(青緑)の単色光が、光の3原色でどのように再現できるかを調べる作業を行います。このような作業を色合わせ、もしくは等色と言います。

等色の実験 

 いま[A]と[B]、[C]と[D]という色光があるとします。それぞれの色光の組み合わせが等色であるとき、式1で表すことができます。このような式を等色式と言います。≡は等色であることを示す記号です。

[A]≡[B]   [C]≡[D]・・・(式1)

そして、上記の等色の実験から次の2つの法則があることが確かめられています。この2つの法則をグラスマンの法則と言います。

グラスマンの法則:比例則

光の強度を一定倍にしても等色式は成り立つ

α[A]≡ α[B]      β[C]≡ β[D]・・・(式2)

グラスマンの法則:加法則

等色の光同士を加えても等色式は成り立つ

[A]+[C] ≡[B]+[D]   [A] + [D] ≡ [B] + [C]・・・(式3)

また、ある試験光[A]が[R][G][B]の光をそれぞれα・β・γの割合で組み合わせたときにできるとき、式4のように表すことができます。

[A]≡ α[R] + β[G] + γ[B]・・・(式4)

グラスマンの法則では任意の[R][G][B]の光を決めてやれば、試験光を式4で表すことができます。しかし、様々な色の試験光に対して、[R][G][B]で色合わせを行うためには[R][G][B]の標準化が必要になります。

光の三原色の標準化

 1931年に国際照明委員会(CIE, Commission Internationale de l'Eclairage)は光の3原色を赤色光700 nm、緑色光546.1 nm、青色光435.8 nmの単色光としました。当時はLED(発光ダイオード)などありませんでしたから、実験に使いやすい光の波長が選ばれました。緑色光546.1 nm、青色光435.8 nmの光は水銀ランプの輝線です。赤色光700 nmは可視光の最も長波長の光を採用しました。このCIEの等色の標準化には、英国のJohn GuildWilliam David Wrightがそれぞれ別途に実施した実験結果が採用されています。この実験に使われていた光の三原色が上記の3つ波長の光だったのです。この三原色を使った色の表現方法をRGB表色系と言います。

 ところで、ヒトの眼の色を感じる錐体細胞は中心窩から2度以内のところに集中して分布しています。そのため、混色の実験でどのような色が見えるかは、観察者の視野によって変わります。そのため、CIEは測色標準観察者なるものを定義し、中心窩から2度の視野角で得られる色覚を人の標準的な色覚と定義しました。

次の図は、等色の実験において、試験光の波長を変更しながら、その試験光に等色する[R][G][B]の三刺激値を求めプロットしたものです。

CIE 1931 RGB等色関数

 この図は「CIE 1931 RGB等色関数」のグラフです。たとえば、660 nmの試験光に対する三刺激値の比率は次のよう読み取ることができます(実際には等色関数から計算で求めます)。

[R]:[G]:[B]=0.05932:0.00037:0.0000

 ところで、この等色関数のグラフを見ると、赤色光が450 nmあたりから550 nmあたりまでマイナスの値になっています。たとえば、約490 nmの試験光は、青色光と緑色光をおよそ0.05の割合で加えて、赤色光を0.05引かなければ再現できません。これを式で表すと次のようになります。

490 nmの試験光=0.05[B]+0.05[G]+(-0.05[R])

 光の三原色ではシアンの光は緑と青の光を混色するとできるはずですが、マイナスの赤い光を加えるというのはどういうことなのでしょうか。

 実は、波長490 nmのシアンの単色光を光の三原色の[G][B]の混色で作ろうとすると、このシアンの単色光の鮮やかさを再現することができないのです。そこで、等色実験で試験光のシアンの単色光に赤色の光を加えると、[G][B]で作ったシアンの光の色と等色になります(式5)。

490 nmのシアンの単色光 +[R]  = [G] + [B]・・・(式5)

ですから、490 nmのシアンの単色光は次のよう表すことになるのです。

490 nmのシアンの単色光 = [G] + [B] + [-R]・・・(式6)

 このように、490 nmのシアンの単色光を作るには[G][B]の光にマイナスの[R]を加えなければなりません。これは色を表現するのに非常に不都合です。そこで、CIEはマイナスの光を扱わなくても色を表すことができる数値で表す仮想的な3原色XYZをつくりました。大まかに言うとXは赤、Yは緑、Zは青で、Yだけには輝度を表す役割があります。このXYZを用いて現実の色を表現する方法をXYZ表色系と言います。

CIE 1931 XYZ等色関数

 ところで、カラーテレビや液晶ディスプレイは光の3原色を使って色を再現していますが、必ずしもCIEが定めた波長の光が使われているとは限りません。例えばカラーテレビは赤・緑・青の光を出す3種類の蛍光物質に電子ビームを当てて色を作りますが、それらの蛍光物質が出す光の波長はだいたい赤色光で610 nm、緑色光で550 nm、青色光で470 nmです。これらの波長は使う蛍光物質よって変わりますから、カラーテレビの色再現は厳密にはどの蛍光物質を採用したかによって異なることになります。このような色の表現を「機種依存な色表現」と言います。つまり、現実に使われているRGB 表色系は厳密には色を指定するのに向いていないという側面があります。

人気ブログランキングへ

【関連記事】

| | | コメント (0)

より以前の記事一覧