光学

2020年7月21日 (火)

「レンズ」のキホン (イチバンやさしい理工系)

 「レンズ」のキホン (イチバンやさしい理工系)

 光学とレンズの初心者向けの図解入門書です。フルカラーですので、光路図などがとてもわかりやすくなっています。光学とレンズのキホンのキから解説しているので、これからレンズのことを勉強したい人だけでなく、レンズの基本を教える人にとっても役に立つと思います。

Hyosi

桑嶋幹(著)

レンズを知ると光学はこんなにおもしろい!
昨今のデジタル一眼レフカメラのブームもあって、レンズのことをもっと知りたい人が増えています。本書は、高校生から一般の人を対象に、レンズのことを知る超入門書として、図解や写真をふんだんに使いながら、わかりやすく光の世界を解説します。

レンズを知ることは、光の性質を知ることにつながります。また、メガネや望遠鏡などの光学機器ばかりか、ヒトの眼の構造の理解も進みます。身近な例を題材に、徹底してやさしく、おもしろい話題を集めました。

単行本: 224ページ
出版社: ソフトバンククリエイティブ (2010/6/18)
ISBN-10: 4797357150
ISBN-13: 978-4797357158
発売日: 2010/6/18

読者サポートサイト

http://lens-softbank.goryoukaku.com/

目次

はじめに
登場キャラクターのご紹介

第 1 章 レンズのお話

001 レンズは光の屈折をたくみに利用するために生みだした道具
002 レンズの歴史
003 小さなものを拡大して見る顕微鏡の歴史
004 遠くのものを近くに見る望遠鏡の歴史
005 レンズでできた像を記録するカメラの歴史

COLUMN レンズの語源

第 2 章 光のふるまい

006 光の直進性と逆進性
007 光の反射の法則
008 鏡による光の反射
009 光の乱反射
010 透明な物体を通る光
011 光は物質の境界面で折れ曲がる 光の屈折
012 光はどのような道筋を選んで進むのか フェルマーの原理
013 スネルの法則①
014 スネルの法則②
015 空気のゆらぎが光を曲げる 陽炎と逃げ水のしくみ
016 空気のゆらぎが光を曲げる 蜃気楼と大気差のしくみ
017 プリズムでできる光の色の帯 光の分散
018 大空にかかる光の色の帯 虹ができるしくみ
019 虹の形はどうして円弧なのか
020 光は波か粒子か① 光の回折
021 光は波か粒子か② 光の干渉
022 光の回折と干渉でできる虹のしくみ
023 光は縦波か横波か
024 偏光メガネとブリュースターの法則
025 光は電磁波の仲間
026 光の速さはどれぐらいか
027 光のふるまいを考える幾何光学と波動光学

COLUMN 近接場光ー光の回折限界を超える光 66

第 3 章 レンズのしくみと働き

028 点光源からでた光はどのように進むか
029 影のでき方
030 ピンホールでできる像
031 ピンホールカメラでできる像
032 レンズの基本的なしくみ
033 凸レンズと凹レンズの基本的な働き
034 レンズの焦点と焦点距離
035 レンズの主点と主平面
036 薄肉球面レンズの焦点距離の求め方
037 レンズを通る光の進み方
038 凸レンズでできる実像
039 無限遠からやってくる光は凸レンズでどこに像を結ぶか
040 凸レンズでできる虚像
041 凸レンズを半分隠すと実像と虚像はどうなるか
042 物体が焦点の位置にあるとき実像と虚像はどうなるか
043 凹レンズでできる虚像
044 レンズの写像公式と倍率① 凸レンズの実像の場合
045 レンズの写像公式と倍率② 凸レンズの虚像の場合
046 レンズの写像公式と倍率③ 凹レンズの虚像の場合
047 レンズの写像公式のまとめ
048 レンズの倍率を求めるもう1つの方法
049 レンズの作図の裏技① 光軸上の1点からでて凸レンズに入射する光
050 レンズの作図の裏技② 凸レンズに任意の傾きで入射する光
051 レンズの作図の裏技③ 凹レンズを通る光の場合
052 2枚のレンズを通る光
053 凹面鏡と凸面鏡のしくみ
054 凹面鏡と凸面鏡で反射する光
055 レンズの分類の仕方
056 表面屈折を利用したレンズ① 球面レンズ
057 表面屈折を利用したレンズ② 非球面レンズ
058 表面屈折を利用したレンズ③ シリンドリカルレンズ
059 表面屈折を利用したレンズ④ トロイダルレンズ
060 表面屈折を利用したレンズ⑤ フレネルレンズ
061 表面屈折を利用しないレンズ① グリンレンズ(屈折率分布レンズ)
062 表面屈折を利用しないレンズ② 回折レンズ

COLUMN メタマテリアルー負の屈折率をもつ物質

第 4 章 レンズの性能

063 レンズをつくる光学ガラスに求められる性質
064 光学ガラスの屈折率
065 光学ガラスのアッベ数
066 光学ガラスの分類
067 ガラス以外の光学材料① 天然や人工の結晶
068 ガラス以外の光学材料② 光学プラスチック
069 レンズができるまで① 球面レンズのつくり方
070 レンズができるまで② 非球面レンズのつくり方
071 収差とはなにか
072 球面収差
073 球面収差の補正
074 コマ収差と非点収差
075 像面湾曲と歪曲収差
076 軸上色収差と倍率色収差
077 像の大きさと明るさ
078 Fナンバーと実効Fナンバー
079 開口数NAとレンズの分解能
080 絞りと瞳
081 絞りの位置とテレセントリック
082 焦点深度と被写界深度

COLUMN ガラスはなぜ透明なのか

第 5 章 レンズを使った身近なもののしくみ

083 ヒトの眼の構造
084 正常な眼のしくみと働き
085 近視と遠視
086 老視と乱視
087 コンタクトレンズのしくみ
088 ルーペのしくみ
089 ルーペの倍率
090 光学顕微鏡のしくみ① 基本的なしくみ
091 光学顕微鏡のしくみ② 倍率と分解能
092 望遠鏡のしくみ① 基本的なしくみ
093 望遠鏡のしくみ② ケプラー式望遠鏡の光の進み方
094 望遠鏡のしくみ③ オランダ式(ガリレオ)望遠鏡の光の進み方
095 望遠鏡のしくみ④ 望遠鏡の倍率
096 望遠鏡のしくみ⑤ ピント合わせが必要なのはなぜ?
097 カメラのしくみ① Fナンバーとシャッタースピード
098 カメラのしくみ② 画角と焦点距離
099 カメラのしくみ③ デジタルカメラの画角と焦点距離
100 進化するレンズ 流体レンズのしくみ

COLUMN 像反転系 倒立像を正立像として見る

参考文献
索引

サンプルページ

第1章 第1節 レンズは光の屈折をたくみに利用するために生みだした道具

1001

第2章 第6節 光の直進性と逆進性

2006  

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2020年6月23日 (火)

Opus Majus of Roger Bacon ロジャー・ベーコンの大著作

ロジャー・ベーコンは13世紀に活躍したイギリスの哲学者でカトリックの司祭でした。ニュートンより400年も前の時代に、自然科学の理論の探求を行い、実験や観察を行いました。近代科学の先駆者と言えるでしょう。

Rogerbacon

今回紹介する書籍はロジャー・ベーコンの大著作(Opus Majus)の上下巻です(この本は英語版です)。

光学・レンズの歴史を勉強するうえで、ロジャー・ベーコンの功績は外せません。高価ではありますが、光学の歴史に興味のある人は手元にあっても良いかと思います。

Book Description

Volume one of a two volume set. (This description is for both volumes.) Contains much of Bacon's principle writings in mathematics, optics, experimental science, and philosophy. Bacon is regarded as the first modern scientist. This is one of his major works with 8 plates and 72 illustrations.

The Opus Majus of Roger Bacon (Cambridge Library Collection - Physical Sciences)

The Opus Majus of Roger Bacon, Volume 2, Part 1 & 2 (Cambridge Library Collection - Physical Sciences)

 

   人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2020年6月10日 (水)

分光分析の幕開け(5)-可視光線の波長範囲の測定

ニュートンのプリズム実験で見逃されたもの

 ニュートンが1666年に太陽光をプリズムで分散してスペクトルの観察をした実験の様子は、ニュートンが1704に出版した『光学』に詳しい記述があります。

▶︎ニュートンのプリズム分光実験が1666年である根拠
https://optica.cocolog-nifty.com/blog/2014/05/1666-2081.html
▶︎光学の原著 Opticks by Sir Isaac Newton / Project Gutenberg
https://optica.cocolog-nifty.com/blog/2012/05/opticks-by-sir.html

 なにしろ、ニュートンは光を波と考ようとはしませんでしたので、可視光線の連続スペクトルの各部の色を屈折角と関係づけて説明しています。

可視光線のスペクトル

 ですから、ニュートンは光の色の説明で波長のことは言及していません。その後の他の科学者達によるスペクトルの実験でも、しばらくの間は光の色と波長が関係づけられることはありませんでした。赤外線を発見したハーシェルも紫外線を発見したリッター も光と波長の関係については言及していません。詳細な実験がいろいろ行われ、いろいろなことが解き明かされたにも関わらず、光の色と波長の関係だけは取り残されていたのです。

光は波であると結論づけたのは誰か?

 ニュートンの時代でも、クリスティアーン・ホイヘンスやロバート・フックなど光が波であろうと考えていた科学者はいましたが、光の波長を求めるところまでは至っていません。光の波長はあまりにも小さいため、当時の技術で光の波長を測定するのは困難だったのです。

 光が波であることを解き明かしたのはトマス ・ヤングです。ヤングは1790 年代には医学を学び、視覚、色覚、聴覚、音声について研究を行いました。それらの研究をきっかけに、やがて光学に興味をもつようになり、光の正体が何かを考えるようになりました。

Thomasyoung
トマス ・ヤング

 ヤングは 1773 年に生まれで、ニュートンは 1727 年、ホイヘンスは 1695 年、フックは1705年に没しています。ですから、ヤングは光の粒子説と波動説の争いの渦中にあったわけではありません。ヤングが生まれた頃には、この争いは光の粒子説の勝利で決着がついていました。その後も、ニュートンが提唱した説が覆されることはありませんでした。

 しかし、ヤングは音は空気中を伝わる波によって生じるのだから、光も波だろうという考えに至り、光が波であることを突き止める研究を進めました。そして、1800 年に「音と光についての実験および理論的研究に関する議論」という論文を発表し、世界で初めて波の干渉の原理につい
て説明しました。この論文は、音と光の比較から、光の振る舞いについて説明したものです。しかし、干渉の現象は音の波での説明であり、光
の干渉にまでは十分に拡張されていませんでした。

 ヤングはその後も光の干渉の実験を勧め、有名なヤングの実験(二重スリットの実験)で光の波を干渉させ、光が波であることを証明しました。この実験はヤングが1807年に発表した 「自然哲学講義」に掲載されていますが、この話は長くなるので、ここでは取りあげません。

ニュートンのスペクトルを波長と関係ずける

 ヤングは1801年に単純な回折格子を用いて、格子の溝の間隔から波長を計算しました。ヤングが用いた回折格子は、1インチあたり500本の溝が刻まれたガラス板でした。この回折格子に45度で太陽光を入射させると、光の干渉により、4つの明るい序列が現れました。回折角の正弦が整数1:2:3:4に従って増加していることから、ヤングは太陽光の波長を求めることができました。ヤングの計算では、可視光線の範囲は424 nmから675 nmの光となります。このことはヤングの1802年にまとめた下記の論文に掲載されています。

Young, T., "The Bakerian Lecture: On the Theory of Light and Colours", Phil. Trans. R. Soc. Lond., 92, 12-48 (1802). 
https://royalsocietypublishing.org/doi/10.1098/rstl.1802.0004
Veiw PDFをクリックすると、PDFを参照することができます。

上記の論文の39ページの下表に結果がまとめられています。

Theoryoflightandcolours

この表の波長の単位はインチになっています。

赤側の端と紫側の端をメートルに換算してみましょう。

Red Extremaは、0.0000266 inchとあります。1inchは2.54 cmですから、0.0254 mになります。

0.000026 inch × 0.0254 m/inch = 0.00000067564 m

これに109をかけてnmにすると、675.64 nmになります。

同様に、

Violet Extremaは、0.0000167 inchiですから、424.18 nmになります。

実は小数点の下三桁の数字に2.54をかけると、ちょうどnm単位になります。

人気ブログランキングへ

| | コメント (0)

2020年6月 5日 (金)

分光分析の幕開け(4)-紫外線の発見

化学線の発見

 1801年、ドイツのヨハン・ヴィルヘルム・リッターは、1800年のハーシェルの熱線(赤外線)の発見に触発されて、太陽光のスペクトルの紫色光の外側にも目に見えない光があるのではないかと考えて、実験を行うことにしました。

Die Auffindung nicht sichtbarer Sonnenstrahlen außerhalb des Farbenspektrums an der Seite des Violetts.
Ritter, J. W. (1801) 6. Von den Herren Ritter und Backmann. Annalen der Physik, 7, 527.

 実験を行うにあたり、リッター は塩化銀の光化学反応を利用しました。当時、硝酸銀や塩化銀に光を当てると黒化する現象はよく知られていました。最初の記録としては、1614年にタリアの医師Angeleo Salaが太陽光を硝酸銀の粉末に当てると色が黒くなることを報告しています。

 リッターは、太陽光のスペクトルの様々な色の光を塩化銀に当て、塩化銀が白色から黒色に変化する反応速度を調べました。そして、赤色光では、塩化銀がほとんど変色しないこと、青色光が赤色光よりも速く塩化銀を黒化させることを確認し、さらにスペクトルの紫色光の外側0.5インチの色がついていない部分がもっとも速く塩化銀を黒化することを発見しました。

 この実験の結果から、リッターはスペクトルの紫色光の外側に目に見えない物質を変化させる放射線が存在することを示し、これを脱酸線(de-oxidierende Strahlen)と名付けました。脱酸素線は後に化学線と呼ばれるようになりました。

 リッター が発見した化学線が光の仲間であることは直ちには受け入れられませんでした。化学線が紫外線と呼ばれるようになるまでには、しばらく時間を要しました。

人気ブログランキングへ

| | コメント (0)

2020年6月 2日 (火)

分光分析の幕開け(3)-赤外線の発見

熱線の発見

 1800年、イギリスのウィリアム・ハーシェルは、プリズムでできた太陽光のスペクトルのさまざまな部分に温度計を当てて、様々な色の光の温度を測定しました。

Herschel, W(1800) Experiments on the refrangibility of invisible rays of the sun. Phil. Trans. R. Soc. Kond.,90,255-283,284-292,293-326.
https://royalsocietypublishing.org/doi/10.1098/rspl.1800.0013

Herschelinfrared

 実験の結果、赤色光は周囲より7 F°、緑色光は3 F°、紫色光は2 F°だけ温度を上昇させることを発見しました。

 さらに、ハーシェルはスペクトルの赤色光側の外側の温度を測定してみました。このときプリズムでできた可視スペクトルの幅は4インチほどになりましたが、赤色光側の端から1.5インチ外側の部分が最も大きい9 F°の温度上昇となることを突き止め、スペクトルの目に見える色がついている部分よりも温度が高くなることを発見しました。

 また、ハーシェルは紫色光の端から外側の部分でも同じ測定を試みましたが、温度上昇は認められませんでした。ハーシェルはこの領域での探究は継続しなかったようです。

 ハーシェルは、太陽光のエネルギーの最大強度は緑色光から黄色光あたりにあることから、太陽光の熱エネルギーの最大強度は、光のエネルギー最大強度と比べてかなりずれていることを指摘しています。

 ハーシェルは一連の実験から、赤色光の外側に熱を運ぶ熱線があると考えました。ハーシェルは熱線が光と同じ屈折と反射の法則に従うことを発見し、放射熱と光は本質的に同じものであることを提案しましたが、19世紀半ばまで受け入れられませんでした。

 また、ハーシェルが発見したのは紛れもなく赤外線でしたが、しばらくの間は「熱線」などと呼ばれました。

人気ブログランキングへ

| | コメント (0)

2020年5月31日 (日)

分光分析の幕開け(2)-ニュートンのプリズム実験

ニュートンのプリズム実験

 分光分析の幕開けと言えば、アイザック・ニュートンが1666年に行ったプリズムの実験を外すことはできないでしょう。ニュートンは無色の太陽光をプリズムに通すと、虹のような連続した光の色の帯が現れる現象について研究を重ね、この光の色の帯のことをスペクトルと名付けました。

 さて、この「分光分析の幕開け」シリーズの(1)でニュートンのプリズムの実験についてあえて触れなかった理由として、

  • このブログでニュートンのプリズム実験についての説明を何度か掲載していること
  • ニュートンのプリズム実験から19世紀の分光学の発展期の間には相当の年月が経過しており、ニュートンの実験が直接的に分光学の発展に寄与したとまではいえないこと

などもあるのですが、ニュートンが1704年に著作「光学」で非常に重要な先駆的な実験と結果を示したにもかかわらず、その後の光の探究からはあえて遠ざかってしまったふしがあるからです。

Opticks

 ニュートンは光の正体を粒子と考え、光の直進、反射、屈折などの現象を説明をしました。クリスティアーン・ホイヘンスやロバート・フックは光のさまざまな現象を観察し、鋭い洞察力から光は波だと唱えました。しかし、当時、万有引力を発見していたニュートンの権威があまりにも絶大だったため、ニュートンの説が覆ることはありませんでした。

 ニュートンの著作「光学」に目を通してみると、前半部分に記述されている反射、屈折、プリズム分光などの現象の研究においては、光を粒子とした説明に勢いが感じられます。しかし、後半部分には、ニュートンリング、薄膜の構造色、回折など、光を粒子とすると説明が困難になりそうなものを題材として取り上げており、説明に苦戦しています。ニュートンの説明はこじつけのようなものもありましたが、それでも何とかつじつまを合わせて光の現象を説明できたのです。しかし、結論を出さずに説明を保留した現象もあります。

なぜ、ニュートンは自らの説明が困難になるような現象まで題材として取り上げたのでしょうか。それは、プリズムの実験からもわかるように、ニュートンが光と物質の相互作用と色の関係を解明しようとしていたからです。そういう意味では、ニュートンは何がなんでも光を粒子だと貫いていたわけではありませんでした。

 ニュートンは、自身やその他の多くの研究者が光の研究を進めていく過程で、光は周期的な性質をもつことを認識していました。ですから、光の正体は本当は波なのではないかと気がついていたようにも思います。しかし、ニュートンは、光の現象について、光が波であるという立場での説明はしませんでした。ニュートンが波の立場で光の現象を説明していたら、もっといろいろなことが解明されていたかもしれません。

人気ブログランキングへ

| | コメント (0)

2020年5月28日 (木)

分光分析の幕開け(1)-炎色反応でナトリウムの輝線を発見

炎色反応のスペクトルに輝線を発見

 18世紀のスコットランドの自然哲学者トーマス・メルビル(Thomas Melvill)は、1752年にエジンバラの医学会において「光と色の観察」という講義を行い、炎色試験について説明しました。

Melvill, Thomas  "Observations on light and colours". Essays and Observations, Physical and Literary. Read before a Society in Edinburgh, …. 2: 12–90. ; see pp. 33–36.

Melvill, Thomas, "Observations on light and colours", Journal of the Royal Astronomical Society of Canada, Vol. 8, p.231.
http://adsabs.harvard.edu/full/1914JRASC...8..231M

 メルビルはさまざまな塩類の炎色反応の炎から発する光をプリズムを使って分光しスペクトルを観察を行ました。

 そして、すべての塩類の炎のスペクトルにおいて、同じ位置に黄色の輝線が現れることを報告しています。この黄色い線はメルビルが実験に使った塩類に含まれていた不純物のナトリウムに由来しましたが、メルビル自身は黄色い輝線の原因を特定することはできませんでした。また、メルビルはプリズムの作用の原理として、異なる色の光線は異なる速さで進むという説を提案しています。

 メルビルは、世界で初めて炎色試験を行った人物として、フレーム発光分光法(炎光光度法)の父と呼ばれることもあります。

ナトリウムの輝線(D線)

 メルビルが発見したナトリウムの輝線は、後にD線と呼ばれるようになりました。D線はナトリウム原子により吸収あるいは放出されるスペクトル線で、ごく近い波長のD1線(589.6 nm)とD2線(589.0 nm)の2本からなります。

ナトリウムD線
ナトリウムランプの輝線スペクトル(D線)

 ところで、ナトリウムはドイツ語Natriumで、英語ではSodiumです。なぜ、ナトリウムの輝線がD線と呼ばれるのかは、この分光分析の幕開けの続編の中で説明します。

人気ブログランキングへ

| | コメント (0)

2020年5月26日 (火)

天文アマチュアのための―新版 屈折望遠鏡光学入門

新版 屈折望遠鏡光学入門―天文アマチュアのための

吉田 正太郎

この本も絶版となっており中古本しか入手できませんが、屈折式望遠鏡の仕組みについて原理からしっかりと解説されており、ガリレオ式望遠鏡やケプラー式望遠鏡などの仕組みを学びたい人にお勧めの本です。

中古本ですが高い値がついています。自分が新品を購入した値段は2,940円でした。

Photo_20200521191401

内容(「BOOK」データベースより)

屈折望遠鏡の基本的な原理と、最新の技術を、できるだけ正確に、わかりやすく説明。

内容(「MARC」データベースより)

天体観測ばかりでなく、精密測角、照準望遠鏡、フィールドスコープ、双眼鏡としても広く用いられている屈折望遠鏡の基本的な原理と、最新の技術を、わかりやすく解説する。

単行本: 342ページ
出版社: 誠文堂新光社; 新版版 (2005/12)
ISBN-10: 441620518X
ISBN-13: 978-4416205181
発売日: 2005/12
商品の寸法: 20.8 x 15 x 2.8 cm

目次

1 世界史のなかの屈折望遠鏡
2 レンズ光学入門
3 屈折望遠鏡の一般光学
4 地上望遠鏡、フィールドスコープ、双眼鏡
5 光学材料
6 対物レンズ
7 接眼鏡
8 カタディオプトリック系

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2020年5月19日 (火)

色彩学貴重書図説―ニュートン・ゲーテ・シュヴルール・マンセルを中心に

色彩学貴重書図説―ニュートン・ゲーテ・シュヴルール・マンセルを中心に

北畠 耀

 これも中古本になりますが、光や色彩の探求の歴史上重要な資料が多数掲載されています。題名の色彩学「貴重書」図説の通りです。冒頭は古代壁画などの解説に始まります。また、ニュートンが光についてどのような実験をやったのかなど、ニュートンが描いた図を見ることができます。ゲーテの色彩に関するニュートンへの反論なども図で楽しむことができます。

色彩学貴重書辞典

内容(「MARC」データベースより)

 哲学者としてのニュートン、自然科学者としてのゲーテ、色彩調和論の先駆者シュヴルール、“色のものさし”を創案したマンセルを中心に取り上げ紹介。色彩の入門者を歴史探訪へ誘う、しかも見て楽しい色の画集のような一冊。

 “色彩文化の歴史的記念碑”あるいは“色彩学三代古典書”と呼ばれる貴重書に、科学史を転換させたニュートンの『光学』(1706)、文豪ゲーテが20年をかけた壮大な著作『色彩論』(1818)、印象派画家から「色のバイブル」と呼ばれた化学者シュブルールの『色の同時対比の法則』(1938)があります。豊かな社会が到来した20世紀には、徐々に色彩計画の重要性が増し「色のものさし」が求められました。このときマンセルは『色表記法』(1905)で画期的な提案を行い、彼が創案したカラースケールは、学問分野のみならず全産業に大きく貢献しました。

 本書では、上記4人の著書の図説を中心に、主に16世紀から今日までの色彩学の発展に貢献した重要な書籍を図説で解説。色彩研究史年表も充実させました。

単行本:101ページ
出版社::日本塗料工業会 (2006/04)
ISBN-10::4841904158
ISBN-13::978-4841904154
発売日:2006/04

目次

01. 古代社会における色彩象徴
02. 古代ギリシアの世界観
03. 中世の色彩文化
04. ルネサンスの造形術と色彩書
05. 17世紀における色彩体系の発想
06. 科学革命時代の群像
07. 哲学者としてのニュートン
08. 自然科学者としてのゲーテ
09. 色彩調和論の先覚者シュヴルール
10. 複製術(版画・印刷・織布・写真)の開発者たち
11. 色を音の類比で構想したフィールド
12. 明治初期の初等教科書『色圖問答』
13. 産業の色彩と教育の色彩
14. “色のものさし”の創案者マンセル
15. 色空間で調和を論じたオストワルト
16. 色名体系の登場と発展
17. メルツ&ポール色名辞典
18. ISCC-NBS色名法
19. 18世紀以降の色彩体系の展開
20. XYZによる表色系の統括
APPENDIX
色と光の文化史年表
色と光の探求者関連年表

巻末折り込み:
太陽光のスペクトルとシュヴルール色相との対応図

 

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2020年5月 5日 (火)

光技術入門

光技術入門 第2版

堀内 敏行 (著)

2

光学機器の入門書です。入門書といっても専門書で、数式も多いのですが、図と説明がしっかりしていますので、数式が苦手な人でも読み進めることができると思います。

単行本: 247ページ
出版社: 東京電機大学出版局; 第2版 (2014/7/20)
言語: 日本語
ISBN-10: 4501628804
ISBN-13: 978-4501628802
発売日: 2014/7/20
梱包サイズ: 21.2 x 15.2 x 2 cm

目次

第1章 光線の性質
 1.1 光とは
 1.2 幾何光学
 1.3 幾何光学の基本原理
 1.4 幾何光学の基本法則
 1.5 正規反射と乱反射
 1.6 全反射
 参考文献
第2章 レンズによる結像
 2.1 凸レンズと凹レンズ
 2.2 光軸と焦点
 2.3 主点と主平面
 2.4 球面における屈折
 2.5 凸レンズによる結像
 2.6 凹レンズによる結像
 2.7 ニュートンの結像式
 2.8 レンズを2枚重ねたときの焦点距離
 参考文献
第3章 ミラーによる結像
 3.1 凸面鏡と凹面鏡
 3.2 凹面鏡による平行光の集束
 3.3 凸面鏡による平行光の発散
 3.4 凹面鏡による結像
 3.5 凸面鏡による結像
 3.6 平面鏡による結像
 3.7 球面以外の二次曲面の性質
 参考文献
第4章 収差
 4.1 球面による収差
 4.2 色収差
 参考文献
第5章 光の波動性
 5.1 光の波動的な特徴
 5.2 光の波動の解析
 5.3 干渉
 5.4 偏光
 5.5 反射特性への波動性の影響
 参考文献
第6章 回折
 6.1 回折現象
 6.2 短形スリット2によるフラウンホーファ回折
 6.3 回折格子
 6.4 円形開口によるフランホーファ回折
 6.5 レンズによるフランフォーファ回折
 6.6 スリットによるフレネル回折
 6.7 ナイフエッジによるフレネル回折
 6.8 光波の複素数表現
 参考文献
第7章 光の粒子性
 7.1 水素の輝線スペクトル
 7.2 光子と光子のもつエネルギ
 参考文献
第8章 光と視覚
 8.1 人間の目の構造
 8.2 人間の目の解像度
 8.3 光の強さ
 8.4 めがね
 参考文献
第9章 レーザ
 9.1 レーザ光の発生
 9.2 レーザ光のモード
 9.3 レーザ光の種類と用途
 参考文献
第10章 光ファイバー
 10.1 光ファイバーの構造
 10.2 光の伝播可能角度
 10.3 通信用光ファイバー
 10.4 画像取り出し用光ファイバー
 10.5 ライトガイド
 参考文献
第11章 光学機器
 11.1 拡大鏡(ルーペ)
 11.2 顕微鏡
 11.3 望遠鏡
 11.4 カメラ
 11.5 コピー機
 11.6 レーザプリンタ
 参考文献
第12章 光応用技術
 12.1 液晶ディスプレイ
 12.2 ホログラフィ
 12.3 干渉を利用した距離測定技術
 12.4 屈折率分布の可視化技術
 12.5 発光ダイオード
 12.6 光造形法
 12.7 リソグラフィ
 参考文献
索引

 

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

より以前の記事一覧