« 2020年7月 | トップページ | 2020年9月 »

2020年8月

2020年8月28日 (金)

Color Images|白黒写真をカラー写真にするアプリ

 昭和時代に撮影した白黒写真がたくさんあります。白と黒の諧調からなる白黒写真は味わい深いのですが、カラーだったらどんな写真に仕上がっていたのかも気になります。昔であれば、職人さんが白黒写真に色をつけていくのですが、今はAIで色をつけることができるソフトウェアが多数あります。スマホのアプリにもないかなと思って検索してみたところ、Color Imagesというなかなか優れもののアプリを見つけました。

Google Play Color Images

Colorimages

 カラー化したい白黒写真を選ぶだけでカラー写真ができあがります。何色なのかわからないものはAIが判断して着色しているのだと思いますが、ほとんど違和感がありません。

 試しに何枚かカラー化してみました。

まずは浅草の中店通りの親子の写真です。着物の色が本当かどうかわかりませんが、まったく違和感ありません。

Photo_20200828171801
浅草中店通りの親子(1964年頃)

 次は銀座の並木通り。これも看板が本当の色と比べてどうなのかわかりませんが、昭和の銀座っぽい看板の明かりに仕上がっているように思います。ショーウィンドウの中も、親子?2人も違和感なくカラー化されています。

Photo_20200828173801
銀座並木通り(1964年頃)

 他にも白黒写真がたくさんあるので、またアップします。

人気ブログランキングへ

| | コメント (0)

2020年8月24日 (月)

シッカリ学べる! 「光学設計」の基礎知識

シッカリ学べる! 「光学設計」の基礎知識

 光学設計を解説した多くの本は、光学の基礎知識が十分あることが前提で、数式ばかりが目立ちます。この本も数式は多いのですが、必要となる前提知識を解説しながら展開しているので、たとえば掲載されている図が与えられた課題のようなものではなく、どうしてそのようになっているのかを考えることができます。光学設計を行う上での必要な力を身に着けることができる一冊です。

 光学設計が専門ではなくても、光学系についてわかりやすく解説しているので、理科などで光学の実験を行う人、カメラ・望遠鏡・顕微鏡などの光学機器に興味のある人にとっても役に立つと思います。

Photo_20200823231701

内容

光学設計では、具体的には、光を都合よく収束、あるいは拡散させて画像を得たり、照明をしたりするために、レンズ、ミラーなどの光学部品の曲率、材質、大きさ、それらの配置を決める作業(計算)を行う。本書は、それを学ぶ、あるいは光学設計を始めようという技術者のために、豊富な図面と基本的な計算式により、丁寧に解説した入門書。

発売日 : 2017/5/27
単行本 : 192ページ
ISBN-10 : 4526077127
出版社 : 日刊工業新聞社 (2017/5/27)
ISBN-13 : 978-4526077128
言語: : 日本語

目次

はじめに

 近年、レンズやミラーなどで構成された光学部品は、カメラや顕微鏡といた旧来の光学製品の枠を超え、スマートフォン用カメラ、車載カメラ、プロジェクションマッピング、各種センサのキー部品として、さらに照明系などの様々な応用分野においてますますその重要性を高めていることは、皆様もご承知のところかと思います。画像を取り込み、高精細な画像を撮像素子上に形成したり、スクリーンに投影したりする場合には現状ではレンズなどの光学部品を用いるしか術がないと言ってよく、こうした光学部品を目的に合わせて設計する“光学設計技術”の必要性も自ずと高まってきています。

 レンズには他の製品に既に使われている完成品を新しい装置に流用する、ということが難しい側面があります。使用波長域、焦点距離、明るさ(Fナンバー)だけでなく、画像に取り込める被写体の広さ、そして結像分解能も所望のレベルを求めなければなりません。さらに光の入射角度、画像の歪み、そして物体からレンズまでの距離、像からレンズまでの距離、レンズの大きさなどの寸法について等々その他にも多くの制約があります。目的の光学的仕様を満たし、できるだけコンパクトで製造コストの安いものを、と考えますと、どこかで大きな妥協をしない限り、新規に光学設計を起こさざるを得なくなります。こうして、差別化された目的に合致した光学系を得るため、あるいはその際に、ある程度妥協するにいたしましても、光学設計技術の知識を必要とされる方が増えているのだと思います。

 またコンピュータの計算能力の向上、市販の光学設計プログラムの入手のしやすさが、今までよりも光学設計を敷居の低いものにしています。そこで、レンズを使う立場の方々も含めた、より多くの方に光学設計について、よりしっかりと知っていただきたい、と思い本書を著させていただきました。

 私は、この光学設計という仕事を始めて35年以上になりますが、この仕事が好きです。どこが好きかと申しますと、なかなか説明は難しいのですが自分の力が出せて多少なりとも人様のお役に立てているということが一番かもしれません。ですが、それだけですとただ自分に適している、というような当たり前な理由になってしいます。もう少しよく考えてみますと光学設計は、光学理論という物理学の範疇に含まれる理論をその拠り所としています(光がどう進む、曲がる、反射される、強め合う、弱め合う、などについて知るために)。ところが、実は数字のみを頼りにして光学系による現象を評価、改善していこうという際の抽象性(本書内では近軸理論、収差論、光路長の理論や最適化のところで顕著です)には、多分に数学的なところがあります。それと同時に当然、光学設計は実際の光学系を製造するためのものでなくてはなりません。従いましてどのように製造しようかという心づもりは設計中も非常に大切になります。

 このように数学と、実際のもの造りが直結して、その結果が確認できるという作業は意外に少ないのではないかと思います。数学というものは、数学的なもの、と言ったほうがよいかもしれませんが思考の成果であり、純粋に考え抜けるものです(抜けない場合も多いですが)。うまくいくとそこには快感が生じます。そしてその結果が工業分野での新しいキーパツとして、製造技術、物理、数学の結実として、実在し、結果を目の当たりにすることができます。結局これが楽しいのだと思います。

 ですから、私の捉え方ではどうしても数式と光学設計は離して考えにくいのです。いくら入門書とは言っても定性的な話ばかりで、数学的な解説のない光学設計の本は、良質な光学の入門書とはなり得ても光学設計の本としてはなかなか成立しにくいのではないかと思います。斯様な次第で、私の力不足もありますが、入門書ではありますが、本書には数式が予想外に多くなってしまいました。お許しいただければと思います(高校の数学レベルで十分理解可能ですが)。とりあえず結果のみ知り、通読後、ご参考にしていただいても結構です。いろいろな読み方でご利用いただいて、本書が少しでも皆様のお役に立てるようでしたら法外の喜びです。

 最後に、本書の出版の機会をお与えいただき、何かとご尽力いただきました日刊工業新聞社出版局、鈴木徹部長に、そしてお世話になりました関係者の方々に深く御礼申し上げます。

2017年2月

牛山善太

第1章 光学設計の概念

1-1 光学設計とは、そもそも光学系とは
1-2 光学系が実現すること
1-3 光学設計における結像評価の考え方
1-4 改めて結像とはどういうことか?
1-5 光学設計における光学理論

第2章 幾何光学と光線について

2-1 幾何光学理論の重要性
2-2 幾何光学で重要な法則、フェルマーの原理
2-3 幾何光学で重要な法則、スネルの屈折則
2-4 幾何光学において明るさを計算するための法則
2-5 光線の構造
2-6 光線追跡について
2-7 収差とは何か?

第3章 近軸理論

3-1 なぜ近軸理論を構造として採用できるのか
3-2 まず倍率を考えてみましょう
3-3 近軸光線追跡式
3-4 焦点距離
3-5 結像を表す重要な式
3-6 レンズメーカーの式による光学系の構造
3-7 実物体と実像、虚物体と虚像
3-8 主点・焦点距離はどこから測るのか?
3-9 主点・主平面の性質

第4章 光学系の明るさを決めるもの

4-1 開口絞り
4-2 視野絞りと主光線
4-3 Fナンバー
4-4 入射瞳と射出瞳
4-5 テレセントリック系とは

第5章 球面収差

5-1 プリズムで収差を考える
5-2 球面収差について
5-3 球面収差の計算
5-4 とりあえず球面収差がなくなる条件とは
5-5 球面収差のパワー分割による補正
5-6 球面収差の打ち消し合いによる補正
5-7 球面収差図
5-8 光線の高さによる球面収差の違い

第6章 軸外の収差、コマ収差

6-1 軸外結像におけるメリディオナル断面とサジタル断面
6-2 軸外の収差、コマ収差と非点収差
6-3 コマ収差
6-4 正弦法則について
6-5 画面中心近傍のコマ収差を除去する正弦条件について
6-6 正弦条件からわかること
6-7 幾何光学において重要な光路長差
6-8 アイコナールと結像の余弦則
6-9 結像の余弦則から正弦条件を導く、そして縦倍率とは
6-10 アプラナティックレンズとコマ収差
6-11 球面収差が残っている時の正弦条件

第7章 非点収差と像面湾曲

7-1 非点収差とは
7-2 スポットダイヤグラム
7-3 メリディオナル像点とサジタル像点位置の計算
7-4 アプラナティズムと非点収差
7-5 像面湾曲とペッツバール和
7-6 ペッツバール和の重要性
7-7 ペッツバール和を小さくできるレンズ1
7-8 ペッツバール和を小さくできるレンズ2
7-9 ペッツバールレンズ
7-10 ペッツバールレンズの利点

第8章 歪曲収差と射影関係

8-1 歪曲収差
8-2 射影関係

第9章 色収差

9-1 光の波長について
9-2 分散とアッベ数
9-3 2枚のレンズによる色消し
9-4 2次スペクトルの除去
9-5 倍率の色収差

第10章 総合的に収差を考える

10-1 完全対称型のレンズについて
10-2 対称系レンズの無限倍率使用1
10-3 対称系レンズの無限倍率使用2
10-4 ピントずれと焦点深度
10-5 横収差図の読み方1
10-6 横収差図の読み方2

第11章 周辺光量

11-1 周辺光量について
11-2 一般的な周辺光量の計算1
11-3 一般的な周辺光量の計算2
11-4 周辺が暗くならない光学系、輝度不変則
11-5 周辺が暗くならない光学系、瞳収差

第12章 光学系の評価と最適化

12-1 光学系の性能評価
12-2 回折による解像限界について
12-3 MTF
12-4 MTFとフーリエ変換について
12-5 MTF図の読み方
12-6 コンピュータによる最適化
12-7 最適化における対応力

参考文献

 

人気ブログランキングへ

 

| | コメント (0)

2020年8月19日 (水)

分光分析の幕開け(9)-天体からのメッセージ

天体からの光のメッセージ

 太陽光のスペクトルにDの暗線があるということは、太陽の表面に多数のナトリウム原子が存在することを意味します。このことは、他の暗線を調べると、太陽にどのような原子が存在するのかがわかることも意味します。

 1868年にインドで観測された皆既日食で、太陽の縁から立ち昇るプロミネンスの光のスペクトルに新たな輝線が確認されました。この輝線は、新しい原子によるものと考えられ、その原子はヘリウムと名付けられました。地球上でヘリウムが発見されたのは、それから27年後の1895年のことです。

 現在、太陽光には約25,000本の暗線が確認されています。暗線は発見者に因みフラウンホーファー線と呼ばれています。

記号 元素 波長(nm) 記号 元素 波長(nm)
A O2 759.370 E2 Fe 527.039
B O2 686.719 F 486.134
C 656.281 G Fe 430.790
D1 Na 589.594 G Ca 430.774
D2 Na 588.997 H Ca+ 396.847
D3 Na 587.565 K Ca+ 392.368

主なフラウンフォファー線

 太陽と同様に宇宙にたくさん存在する恒星からやってくる光のスペクトルを調べることによって、その天体にどのような原子が存在するのかを知ることができます。

宇宙の膨張もわかる 

 地球から遠ざかる天体の光は、ドップラー効果により、波長が長くなります。これを赤方偏移といいますが、どれぐらい波長が長くなったかを調べるには、基準の光が必要となります。この基準にフラウンホーファー線が使われます。

 銀河のスペクトルの赤方偏移から、この宇宙が膨張していることがわかったのです。

 このように遙か彼方の天体からやってくる光には、天体からの原子のメッセージが込められているのです。

人気ブログランキングへ

 

| | コメント (0)

2020年8月13日 (木)

光と物質のふしぎな理論-私の量子電磁力学

光と物質のふしぎな理論―私の量子電磁力学 (岩波現代文庫)

リチャード・P. ファインマン (著), Richard P. Feynman (原著), 釜江 常好 (翻訳), 大貫 昌子 (翻訳)

 この本はファンマン博士の講義の内容をまとめたものです。光を粒子として考え、光と物質の相互作用などをわかりやすく説明しています(もともとの量電磁力学がそれほど簡単ではありませんが、量子電磁力学の本の中ではかなり優しい内容です。

 私たちは、光は直進するという基本的な性質をもっていることや、光が反射するとき入射角と反射角が等しくなるということを知っていますが、この本を読むと、もはやその法則は絶対的なものではなく、近似的なものであるということがわかります。 光がどのように伝わっていくのかなどについても説明されています。

 後半では光子や電子の運動や相互作用などについてファインマンダイアグラムを用いて説明しています。

自分がもっている本はハードカバーで表紙は下記の左側ですが、現在再販されているものは右側のような表紙になっています。

0058660Photo_20200813113201

内容(「BOOK」データベースより)

「ねえ、リチャード、あなたは何を研究しているの?」友達の奥さんがそう尋ねてきた。はてさて、どうする、ファインマンさん。物理が全然わからない人に、自分の研究を理解してもらえるか。それも、超難解で鳴る量子電磁力学を。光と電子が綾なす不思議な世界へ誘う好著。物理学者リチャード・ファインマン、面目躍如の語りが冴える。

単行本: 215ページ
出版社: 岩波書店 (1987/06)
ISBN-10: 4000058665
ISBN-13: 978-4000058667
発売日: 1987/06
商品の寸法: 18 x 13 x 1.6 cm

目次

  1. はじめに
  2. 光の粒子
  3. 電子とその相互作用
  4. 未解決の部分

 

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2020年8月 7日 (金)

分光分析の幕開け(8)-フラウンフォーファー線(暗線)の正体を突き止める

ブンゼンとキルヒホフ

 1859 年、ドイツの化学者ローベルト・ブンゼンと物理学者グスタフ・キルヒホフはスペクトル測定の研究を進めていました。ブンゼンが発明したブンゼン・バーナーはほぼ無色の炎を出すことができました。ブンゼンとキルヒホフは、この炎に物質を入れ、物質から出る光のスペクトルを調べる炎光分光分析という分析法を開発しました。1860年に分光学的手法によりセシウムとルビジウムを発見しています。

キルヒホフとブンゼン
キルヒホフ(左)とブンゼン(右)

太陽光のスペクトルの解析

 ブンゼンとキルヒホフは炎光分光分析法で太陽光のスペクトルの分析を行い、フラウンフォーファー線のD線について調査しました。2人は太陽光のスペクトルに D の暗線が生ずるのは、太陽光がナトリウム原子が出す光を含まないからだと考えました。そして、太陽光とナトリウム原子の光を混合すると、ナトリウム原子のDの輝線が太陽光のDの暗線を補い、全体としてはDの暗線が消えると考えました。ところが、実験の結果は、Dの暗線が消えるどころか、予想に反して、より暗くなってしまったのです。

Photo_20200807143201

暗線の正体を突き止める

 ブンゼンとキルヒホフは、暗線が生じないオイルランプの光とナトリウム原子の光で同様の実験をおこないました。すると、D の暗線をもつスペクトルが得られたのです。2人はこの結果について、「オイルランプの炎の中にはナトリウム原子がたくさん存在する。そこに、
ナトリウム原子が出す光がやってくると、オイルランプ中のナトリウム原子がその光を吸収する。その結果、Dの位置の光が欠けて暗線が生じる」と結論づけました。

 つまり、ブンゼンとキルヒホフは原子自らが発光する光と同じ光を吸収することを発見したのです。

人気ブログランキングへ

| | コメント (0)

2020年8月 4日 (火)

この世界を知るための 人類と科学の400万年史 (日本語)

この世界を知るための 人類と科学の400万年史

レナード ムロディナウ (著) Leonard Mlodinow (原著) 水谷 淳 (翻訳)

この本は科学の歴史について解説した一冊です。第一部は、表題の通り、人類の祖先が誕生した400万年前から話が始まります。人類の好奇心が科学の扉を開き、科学の基礎が作られたプロセスがわかりやすく解説されています。まるで2001年宇宙の旅の類人猿が道具を使い始めることを描写したプロローグを解説したような展開です。第二部以降は、著名な科学者のエピソードをたくさん紹介しながら、科学の発展について解説しています。400ページもありますが、とても読みやすい内容に仕上がっています。科学史に興味のある人は是非一読することをお勧めします。

400

内容(「BOOK」データベースより)

人類はなぜ科学を生み出せたのか?ヒトの誕生から言語の獲得、古代ギリシャの哲学者、ニュートンやアインシュタイン、量子の奇妙な世界の発見まで、世界を見る目を一変させる決定版科学史!

単行本: 416ページ
出版社: 河出書房新社 (2016/5/14)
言語: 日本語
ISBN-10: 4309253474
ISBN-13: 978-4309253473
発売日: 2016/5/14
梱包サイズ: 19.6 x 13.6 x 3.2 cm

目次

第1部 直立した思索者たち

  • 知りたいという欲求
  • 好奇心
  • 文化
  • 文明
  • 道理

第2部 科学

  • 道理への新たな道
  • 機械的な宇宙
  • 物質は何でできているのか
  • 生命の世界

第3部 人間の五感を超えて

  • 人間の経験の限界
  • 見えない世界
  • 量子革命

人気ブログランキングへ

| | コメント (0)

« 2020年7月 | トップページ | 2020年9月 »