色彩

2014年5月 6日 (火)

ニュートンのプリズム分光実験が1666年である根拠

アイザック・ニュートンがプリズムを使って太陽光のスペクトルを観察する実験を行ったのは1666年と言われています。たくさんの本に「1666年」と記載されていますが、ニュートンの「光学」が刊行されたのは1704年です。1666年の根拠は何か調べてみました。

Newton

ニュートンは1665年に万有引力を発見していますが、この頃、ロンドンではペスト菌が大流行しており、ケンブリッジ大学が閉鎖となりました。ニュートンは大学の雑務から解放され、しばらくの間、故郷に帰りました。ニュートンは、かねてから考えていたことを、ゆっくりと研究することができる時間を得て、微分積分学、プリズム分光、万有引力の研究を行いました。

その後、ニュートンは大学に戻り、1669年にケンブリッジ大学の数学の教授職であるルーカス教授となりました。教授となっての最初の功績は、数学ではなく、反射式望遠鏡の発明でした。王位教会はこの反射式望遠鏡に注目し、1671年にニュートンに反射式望遠鏡を提出するよう要求しました。ニュートンは反射式望遠鏡の改良型を作成し、王位教会に提出、多くの専門家から賞賛されました。

ニュートンは、反射望遠鏡の発明の経緯について、王立協会宛に1672年2月6日付けで「New Theory About Light and Colour(光と色の関する新理論)」と題した手紙を送りました。

この手紙の冒頭に、1666年の初めにプリズム実験をしたことが書かれているのです。

New Theory About Light and Colour
by Isaac Newton
Sir,
To perform my late promise to you, I shall without further ceremony acquaint you that in the beginning of the year 1666 (at which time I applied myself to the grinding of optic glasses of other figures than spherical) I procured me a triangular glass prism to try therewith the celebrated phenomena of colours. And in order thereto having darkened my chamber and made a small hole in my window-shuts to let in a convenient quantity of the sun's light, I placed my prism at his entrance that it might be thereby refracted to the opposite wall. It was at first a very pleasing divertissement to view the vivid and intense colours produced thereby; but after a while, applying myself to consider them more circumspectly, I became surprised to see them in an oblong form, which according to the received laws of refraction I expected should have been circular.
They were terminated at the sides with straight lines, but at the ends the decay of light was so gradual that it was difficult to determine justly what was their figure; yet they seemed semicircular.
Comparing the length of this coloured spectrum with its breadth, I found it about five times greater, a disproportion so extravagant that it excited me to a more than ordinary curiosity of examining from whence it might proceed. I could scarce think that the various thickness of the glass or the termination with shadow or darkness could have any influence on light to produce such an effect; yet I thought it not amiss first to examine those circumstances, and so tried what would happen by transmitting light through parts of the glass of divers thicknesses, or through holes in the window of divers bignesses, or by setting the prism without, so that the light might pass through it and be refracted before it was terminated by the hole. But I found none of those circumstances material. The fashion of the colours was in all, these cases the same.
Then I suspected whether by any unevenness in the glass or other contingent irregularity these colours might be thus dilated. And to try this, I took another prism like the former and so placed it that the light, passing through them both, might be refracted contrary ways, and so by the latter returned into that course from which the former had diverted it. For by this means I thought the regular effects of the first prism would be destroyed by the second prism but the irregular ones more augmented by the multiplicity of refractions. The event was that the light which by the first prism was diffused into an oblong form was by the second reduced into an orbicular one with as much regularity as when it did not at all pass through them. So that, whatever was the cause of that length, 'twas not any contingent irregularity.
The gradual removal of these suspicions at length led me to the experimentum crucis, which was this; I took two boards, and placed one of them close behind the prism at the window, so that the light might pass through a small hole made in it for the purpose and fall on the other board, which I placed at about 12 feet distance, having first made a small hole in it also, for some of that incident light to pass through. Then I placed another prism behind this second board so that the light, targeted through both the boards, might pass through that also, and be again refracted before it arrived at the wall. This done, I took the first prism in my hand, and turned it to and fro slowly about its axis, so much as to make the several parts of the image cast on the second board successively pass through the hole in it, that I might observe to what places on the wall the second prism would refract them. And I saw by the variation of those places that the light tending to that end of the image towards which the refraction of the first prism was made did in the second prism suffer a refraction considerably greater than the light tending to the other end. And so the true cause of the length of that image was detected to be no other than that light consists of rays differently refrangible, which, without any respect to a difference in their incidence, were, according to their degrees of refrangibility, transmitted towards divers parts of the wall.
I shall now proceed to acquaint you with another more notable difformity in its rays, wherein the origin of colours is unfolded: concerning which I shall lay down the doctrine first and then for its examination give you an instance or two of the experiments, as a specimen of the rest.
The doctrine you will find comprehended and illustrated in the following propositions.
1. As the rays of light differ in degrees of refrangibility, so they also differ in their disposition to exhibit this or that particular colour. Colours are not qualifications of light, derived from refractions or reflections of natural bodies (as 'tis generally believed), but original and connate properties which in divers rays are divers. Some rays are disposed to exhibit a red colour and no other, some a yellow and no other, some a green and no other, and so of the rest. Nor are there only rays proper and particular to the more eminent colours, but even to all their intermediate gradations.
2. To the same degree of refrangibility ever belongs the same colour, and to the same colour ever belongs the same degree of refrangibility. The least refrangible rays are all disposed to exhibit a red colour, and contrarily those rays which are disposed to exhibit a red colour are all the least refrangible. So the most refrangible rays are all disposed to exhibit a deep violet colour, and contrarily those which are apt to exhibit such a violet colour are all the most refrangible. And so to all the intermediate colours in a continued series belong intermediate degrees of refrangibility. And this analogy 'twixt colours and refrangibility is very precise and strict; the rays always either exactly agreeing in both or proportionally disagreeing in both.
3. The species of colour and degree of refrangibility proper to any particular sort of rays is not mutable by refraction nor by reflection from natural bodies nor by any other cause that I could yet observe. When any one sort of rays hath been well parted from those of other kinds, it hath afterwards obstinately retained its colour, notwithstanding my utmost endeavours to change it. I have refracted it with prisms and reflected it with bodies which in daylight were of other colours; I have intercepted it with the coloured film of air interceding two compressed plates of glass; transmitted it through coloured mediums and through mediums irradiated with other sorts of rays, and diversely terminated it; and, yet could never produce any new colour out of it. It would by contracting or dilating become more brisk or faint and by the loss of many rays in some cases very obscure and dark; but I could never see it changed in specie.
4. Yet seeming transmutations of colours may be made, where there is any mixture of divers sorts of rays. For in such mixtures, the component colours appear not, but by their mutual allaying each other constitute a middling colour. And therefore if by refraction or any other of the aforesaid causes the difform rays latent in such a mixture be separated, there shall emerge colours different from the colour of the composition. Which colours are not new generated, but only made apparent by being parted; for if they be again entirely mixed and blended together, they will again compose that colour which they did before separation. And for the same reason, transmutations made by the convening of divers colours are not real; for when the difform rays are again severed, they will exhibit the very same colours which they did before they entered the composition—as you see blue and yellow powders when finely mixed appear to the naked eye green, and yet the colours of the component corpuscles are not thereby transmuted, but only blended. For, when viewed with a good microscope, they still appear blue and yellow interspersedly.
5. There are therefore two sorts of colours: the one original and simple, the other compounded of these. The original or primary colours are red, yellow, green, blue, and a violet-purple, together with orange, indigo, and an indefinite variety of intermediate graduations.
6. The same colours in specie with these primary ones may be also produced by composition. For a mixture of yellow and blue makes green; of red and yellow makes orange; of orange and yellowish green makes yellow. And in general if any two colours be mixed which, in the series of those generated by the prism, are not too far distant one from another, they by their mutual alloy compound that colour which in the said series appeareth in the mid-way between them. But those which are situated at too great a distance, do not so. Orange and indigo produce not the intermediate green, nor scarlet and green the intermediate yellow.
7. But the most surprising and wonderful composition was that of whiteness. There is no one sort of rays which alone can exhibit this. 'Tis ever compounded, and to its composition are requisite all the aforesaid primary colours, mixed in a due proportion. I have often with admiration beheld that, all the colours of the prism being made to converge and thereby to be again mixed as they were in the light before it was incident upon the, prism, reproduced light, entirely and perfectly white, and not at all sensibly differing from a direct light of the sun, unless when the glasses I used were not sufficiently clear; for then they would a little incline it to their colour.
8. Hence therefore it comes to pass that whiteness is the usual colour of light, for light is a confused aggregate of rays endued with all sorts of colours, as they are promiscuously darted from the various parts of luminous bodies. And of such a confused aggregate, as I said, is generated whiteness, if there be a due proportion of the ingredients; but if any one predominate, the light must incline to that colour, as it happens in the blue flame of brimstone, the yellow flame of a candle, and the various colours of the fixed stars.
9. These things considered, the manner how colours are produced by the prism is evident. For of the rays constituting the incident light, since those which differ in colour proportionally differ in infrangibility, they by their unequal refractions must be severed and dispersed into an oblong form in an orderly succession from the least refracted scarlet to the most refracted violet. And for the same reason it is that objects, when looked upon through a prism, appear coloured. For the difform rays, by their unequal refractions, are made to diverge towards several parts of the retina, and there express the images of things coloured, as in the former case they did the sun's image upon a wall. And by this inequality of refractions they become not only coloured, but also very confused and indistinct.
10. Why the colours of the rainbow appear in falling drops of rain is also from hence evident. For those drops which refract the rays disposed to appear purple in greatest quantity to the spectator's eye, refract the rays of other sorts so much less as to make them pass beside it; and such are the drops on the inside of the primary bow and on the outside of the secondary or exterior one. So those drops which refract in greatest plenty the rays apt to appear red toward the spectator's eye, refract those of other sorts so much more as to make them pass beside it; and such are the drops on the exterior part of the primary and interior part of the secondary bow.
13. I might add more instances of this nature, but I shall conclude with this general one, that the colours of all natural bodies have no other origin than this, that they are variously qualified to reflect one sort of light in greater plenty than another. And this I have experimented in a dark room by illuminating those bodies with uncompounded light of divers colours. For by that means any body may be made to appear of any colour. They have there no appropriate colour, but ever appear of the colour of the light cast upon them, but yet with this difference, that they are most brisk and vivid in the light of their own daylight colour. Minium appeareth there of any colour indifferently with which 'tis illustrated, but yet most luminous in red, and so Bise appeareth indifferently of any colour with which 'tis illustrated, but yet most luminous in blue. And therefore minium reflecteth rays of any colour, but most copiously those endued with red; and consequently when illustrated with daylight, that is, with all sorts of rays promiscuously blended, those qualified with red shall abound most in the reflected light, and by their prevalence cause it to appear of that colour. And for the same reason bise, reflecting blue most copiously, shall appear blue by the excess of those rays in its reflected light; and the like of other bodies. And that this is the entire and adequate cause of their colours is manifest, because they have no power to change or alter the colours of any sort of rays incident apart, but put on all colours indifferently with which they are enlightened.
These things being so it can no longer be disputed whether there be colours in the dark, nor whether they be the qualities of the objects we see, no, nor perhaps whether light be a body. For since colours are the qualities of light, having its rays for their entire and immediate subject, how can we think those rays qualities also, unless one quality may be the subject of and sustain another—which in effect is to call it substance. We should not know bodies for substances were it not for their sensible qualities, and the principal of those being now found due to something else, we have as good reason to believe that to be a substance also.
Besides, who ever thought any quality to be a heterogeneous aggregate, such as light is discovered to be? But to determine more absolutely what light is, after what manner refracted, and by what modes or actions it produceth in our minds the phantasms of colours, is not so easy. And I shall not mingle conjectures with certainties.

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2014年1月 8日 (水)

炎色反応で紫の炎 ダイソーの魔界の炎  

ダイソーのパーティーグッズのコーナーに「魔界の炎」という紫の炎を出す玩具がありました。さっそく火をつけてみると、こんな感じの赤紫の火の玉ができあがりました。

Photo

炎が赤紫になっているのは金属元素の炎色反応によるものです。炎色反応についての詳しい説明は、このブログの過去の記事「花火の色のしくみ」を参照してください。

商品のパッケージにはエチレングリコールが主成分としか書いてありませんが、それだけではこのような色にはならないと思いますので、金属化合物が入っているのでしょう。例えば、赤色の炎を出す炭酸ストロンチウムと青色炎を出す酸化銅を使うと紫の炎を作ることができます。

さて、この炎、空中にふらふら浮く火の玉のように見えますが、実際にはこんな感じになっています。

2

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2013年11月30日 (土)

光源と物体の色のおはなし

■光源の色と物体の色

 私たちが色を見ることができるのは、光源を見ているときか、光で照らし出された物体を見ているときです。

1

 光源の色は、光源から出た光を直接眼でとらえますから、光源が決まれば、眼で見える色が決まります。例えば、波長590 nmの光を出すナトリウム灯はオレンジ色に見えます。
 一方、物体の色は、光源から物体に届く光のうち、物体に吸収せれずに反射した光で決まります。

2

 次の図は光源を太陽とした場合のリンゴとバナナの反射スペクトルを示したものです。

4

 赤いリンゴは太陽光に含まれる青緑系の波長の光を吸収し、太陽光から青緑系の光を欠いた光を反射します。その反射光が私たちには赤く見えるのです。同様に、黄色いバナナは太陽光に含まれる青系の波長の光を吸収し、太陽光から青系の光を欠いた光を反射します。その反射光が黄色く見えます。

3

 赤いリンゴに青緑系の光を当てると、反射する光がありませんからリンゴは黒っぽく見えます。また、黄色いバナナに青色系の光を当てると、同じ理由で黒っぽく見えます。このように、多くの物体の色は「光源の光」と「物体が吸収・反射する光」で決まります。赤いリンゴや黄色いバナナは、昼間の太陽光のもとでは赤色や黄色ですが、光源が変われば見える色も変わります。私たちは普段何も気にすることなく「リンゴは赤色」「バナナは黄色」としていますが、暗黙の了解で光源を昼間の太陽としているのです。

■色の基準となる光は太陽光

 私たちの視覚は太陽のもとで発達してきました。ですから、太陽光は人間にとって最も自然で理想的な光であり、太陽は私たちが見ている色の基準となる光源です。

 太陽から地球にやってくる電磁波は地球の大気で散乱・吸収されます。例えば、人体に有害なガンマ線やエックス線は大気で吸収され、ほとんど地表に届きません。紫外線・赤外線も、その一部しか地表に届きません。可視光線は大気で散乱・吸収されますが、すべての波長領域の光が地表に届きます。このように大気は太陽光に対してフィルターのような働きをしています。多くの生物の視覚は主に大気のフィルターを通り抜けてきた可視光線に適応しながら進化してきたのです。

5

■標準の光

 物体の色は物体を照らし出す光によって違って見えます。太陽光、白熱電灯、蛍光灯のもとでは、同じ色もわずかに違って見えます。色を厳密に定義するためには、光源を特定する必要があります。そこで、私たち人間の視覚にとって理想的な太陽光をもとに標準の光が定められています。その中でも色を定義する光として、D65が基準とされています。D65は紫外線を含む昼間の太陽光で照らされた物体の色を測定するために用いられる標準の光です。D65に紫外線が含まれているのは、紫外線が当たると蛍光を発する物体があるからです。現在、D65の標準の光を忠実に再現する光源はありませんが、D65の標準の光に近い光源が標準光源として使われています。

6

■白色光はどんな光

 白色光はよく「可視光領域の波長の光をすべて含んだ光」「無色の光」などと定義されます。また、物理的にはすべての波長の電磁波を同じ強さで含む光と定義されることもあります。しかし、物体の色について考える場合、昼間の太陽光とほぼ同じように物体の色を再現できる光を白色光としてよいでしょう。

 太陽光は理想的な白色光ですが、実際には黄色い光をたくさん含んでいます。白熱電灯も黄色い光をたくさん含む白色光です。三波長形蛍光灯は赤・緑・青の光を混合した白色光を出しています。一般的な白色LEDは、青色の光を蛍光物質に当てることによって黄色い光を発光させ、青色と黄色の光を混合した白色光を出しています。

7

 これらの電灯は、さまざまな波長の可視光線を均等に含んだ光を出しているわけではありませんし、それぞれ光の成分は異なります。しかし、物体の色を再現するという点においては、私たちが日常使う電灯が出している光は白色光と呼んで差し支えありません。

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2013年10月17日 (木)

踊るペンキ! カラー・スピーカー

スピーカーのコーンに赤色、黄色、緑色、青色のペンキを注いで、音を鳴らします。その様子を、超高速撮影した映像です。

Photo

音楽を鳴らすと、ペンキが涌き立ちます。まるで踊っているかのようです。

Paint on a Speaker at 2500fps - The Slow Mo Guys

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2013年3月21日 (木)

15000リットルの雨水と66000個の紙コップで作ったアート

ひとつひとつの紙コップに色をつけた雨水を入れて、並べていきます。

Yt

いったい何ができるあがるのでしょうか。

THE WORLD'S LARGEST ARTISTIC (RAIN)WATER MOSAIC BY ARTIST BELO

100人以上が62時間をかけて作ったそうですが、そこに現れたのは紙コップと色水による並置加法混色で作られた胎児の絵でした。

このアートを作成するのために使用した水の量は1万5千リットル、紙コップの数は6万6千個。割り算すると、紙コップ1個あたり約230ミリリットルの水が入っている計算になります。紙コップの円周の合計は5.2キロメートル(1個あたりの円周7.8センチメートル)もなるそうです。

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2013年3月13日 (水)

環水平アーク

 雲が色づいて見える環水平アークという現象があります。これは大気中に浮遊した氷の粒で、太陽光が屈折し、水平な虹が見える現象です。

 写真の環水平アークは、2004年5月の連休に白神に登山に行ったときに撮影したものです。JR東日本五能線の白神岳登山口で仲間と合流したのですが、そのときに空に出ていました。

Fi1404700_0e

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2013年2月 8日 (金)

水中に拡散するインク

インクを1滴、水中に落とす。誰もが一度はやったことがあるでしょう。しかし、インクが広がる様子をここまで詳細に見たことがある人はいないかもしれません。

Drop

水の中にインクを1滴落とすと、インクが次第に拡散していきます。この映像はその様子を撮影したものです。この映像は4 k(4096x2304)の解像度でハイスピードで撮影されているため、インクが拡散していく様子や、異なる色のインク同士が混じり合う様子が非常によくわかります。

INK DROPS 4K (ULTRA HD)

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2013年1月 5日 (土)

シソの葉の色

シソは漢字では紫蘇と書きます。シソは古くから薬草として使われ、紫の蘇る薬草ということから、紫蘇と呼ばれるようになりました。北海道の焼酎に鍛高譚という紫蘇の焼酎があります。これも紫蘇の薬効に関する北海道の民話に由来します(鍛高譚の由来)。

私たちが食用にしているシソには赤色の葉のアカジソと、大葉とも呼ばれている緑色の葉のアオジソがあります。アカジソとアオジソはシソ科の仲間ですが、品種は異なります。

私たちが梅干しなどでシソの色と認識しているのは、アカジソの色です。アカジソにはアントシアニン系のシソニンという色素が含まれています。この色素が梅の実を梅干し独特の紅色に染めます。なお、アオジソにはシソニンは含まれていません。

アントシアニンは多くの植物がもっている色素です(花の色はいろいろ)。アントシアニンは次のような化学構造をもつアントシアニジンが糖と結合したものです。アントサニジンはR~Rの置換基が変わることによって、さまざまな種類があります。

Photo

例えば、置換基がOH基であるアントシアニジンのペラルゴニジンは赤色、シアニジンは赤紫色、デルフィニジンは紫赤色をしています。

アントシアニンの化学構造と色の関係
Pelargonidin

また、アントシアニンは、pH によって化学構造に変化が生じ、色調が変化します。酸性条件下では赤色、アルカリ性条件下で青色を呈します。

梅干しを漬けると、酸性の梅酢ができます。すると、アカジソに含まれるアントシアニンが赤色に変化します。梅の実はその色で染められることになります。

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2012年12月21日 (金)

虹色のユーカリの木 Rainbow Eucalyptus

ニューブリテン、パプアニューギニアなどに虹色のユーカリの木の仲間が生息しているそうです。表面の樹皮が向けると、緑色の内樹皮が現れ、その樹皮が時間の経過とともに色づくのだそうです。色がつくのは紅葉と同じような仕組みとのことです。緑色の色素が時間の経過とともに分解して変色するのだろうと思います。

この木はパルプや紙の製造にも使われ、フィルピンでは植林されているそうです。

Rainboweucalyptus

こちらが虹色の木の映像です。

Rainbow Eucalyptus

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

2012年9月 2日 (日)

チョークアート

カフェやレストランなどの飲食店の店先に黒板の看板がよくあります。最近では綺麗に描かれた黒板の看板を見かけるようになってきました。これをチョークアートというようです。

Photo

チョークアートはイギリス発祥のアートですが、アートという面が強くなったのはオーストラリアでのようです。チョークアートに使われる画材はチョークだけではないようです。マジックなどで描いても、チョークアートと呼びます。

チョークアートに魅せられて

人気ブログランキングへ

| | コメント (0) | トラックバック (0)

より以前の記事一覧